-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Description
Hi, In Keras-GAN, inappropriate dependency versioning constraints can cause risks.
Below are the dependencies and version constraints that the project is using
keras*
git+https://www.github.com/keras-team/keras-contrib.git
matplotlib*
numpy*
scipy*
pillow*
scikit-image*
The version constraint == will introduce the risk of dependency conflicts because the scope of dependencies is too strict.
The version constraint No Upper Bound and * will introduce the risk of the missing API Error because the latest version of the dependencies may remove some APIs.
After further analysis, in this project,
The version constraint of dependency keras can be changed to >=0.2.0,<=2.3.1.
The version constraint of dependency scipy can be changed to >=0.9.0,<=1.7.3.
The above modification suggestions can reduce the dependency conflicts as much as possible,
and introduce the latest version as much as possible without calling Error in the projects.
The invocation of the current project includes all the following methods.
The calling methods from the keras
cifar10.load_data mnist.load_data
The calling methods from the scipy
scipy.ndimage.interpolation.rotate
The calling methods from the all methods
model.add test_accs.append PixelDA self.discriminator.compile y_train.reshape self.g_AB self.build_disk_and_q_net strides.filters.Conv2D plt.figure self.build_critic os.path.exists self.sample_generator_input np.random.random Flatten imgs.append self.setup_mnistm range batch_size.self.num_classes.np.random.randint.reshape DiscoGAN self.G_BA.predict ACGAN self.D_A.compile self.critic.compile _x2._x1._y2._y1.masked_img.copy path.scipy.misc.imread.astype context_encoder.train y_train.flatten X_B.reshape CycleGAN self.build_vgg vgg Pix2Pix list open self.critic_model.train_on_batch self.d_A.compile len self.encoder l.set_weights np.arange enumerate dropout_rate.Dropout model cifar10.load_data fig.savefig self.generator_model.compile infogan.train K.gradients sgan.train d_block CGAN plt.imshow self.build_encoder np.argmax f.write self.G_AB scipy.misc.imread imresize i.imgs.copy self.sample_images self.generator Sequential np.random.randint np.random.choice ccgan.train Input self.img_shape.np.prod.self.num_classes.Embedding RandomWeightedAverage COGAN self.sample_interval self.d_B.train_on_batch K.log batch_size.np.random.randint.reshape acgan.train filters.Conv2D to_categorical self.latent_dim.Dense np.expand_dims self.discriminator os.unlink K.square WGANGP options.open.write clf_layer K.sqrt save K.random_normal self.g_AB.predict self.mnist_y.copy bigan.train self.G_BA LeakyReLU dcgan.train zip_f.read img.copy self.data_loader.load_data self.d2 datetime.datetime.now self.clf data.read self.build_generators self.d1.compile images.astype self.build_discriminator self.img_shape.np.prod.Dense DCGAN self.g_BA.predict np.random.normal self.D_A.train_on_batch SRGAN l.get_weights self.d_B.compile self.critic test_accs.pop np.repeat self.generator.predict np.add mnist.load_data j.i.axs.imshow plt.subplots self.d2.compile VGG19 min self.num_classes.Dense self.vgg.compile self.g2 col.row.axs.set_title self.g1.predict np.full Model scipy.misc.imresize self.adversarial_autoencoder.train_on_batch self.d_B self.save_model cgan.train concatenate ContextEncoder glob DUALGAN bgan.train np.clip self.df.Dense Dense gzip.GzipFile self.combined.compile np.vstack K.shape self.build_classifier gan.train self.critic.train_on_batch DataLoader self.d_A zip np.array i.axs.axis self.d2.train_on_batch f_size.filters.Conv2D print plt.close self.save_imgs deconv2d self.g2.predict self.build_decoder self.mask_randomly float self.bigan_generator.compile Dropout os.makedirs np.mean filepath.replace Add X_train.astype self.decoder.predict Concatenate K.exp self.bigan_generator.train_on_batch self.latent_dim.self.num_classes.Embedding self.D_A RMSprop urllib.request.urlopen AdversarialAutoencoder i.j.axs.imshow self.g1 model.summary self.decoder np.empty j.i.axs.set_title UpSampling2D self.d1 self.generator_model.train_on_batch SGAN self.channels.Conv2D self.vgg CCGAN K.random_uniform self.img_shape.Reshape self.build_generator imgs_B.append i.j.axs.axis Embedding aae.train Adam self.imread multiply self.d1.train_on_batch np.save model.to_json self.discriminator.train_on_batch imgs_lr.append j.i.axs.axis pickle.load np.concatenate np.where np.zeros d_layer Activation self.d_A.train_on_batch WGAN self.clf.predict scipy.ndimage.interpolation.rotate self.g_BA gen_imgs.reshape self.D_B.train_on_batch partial ZeroPadding2D Conv2D self.setup_mnist self.G_AB.predict residual_block self.encoder.predict self.build_discriminators model.save_weights int i.axs.imshow GAN self.adversarial_autoencoder.compile BIGAN LSGAN np.empty_like self.normalize self.D_B imgs_A.append wgan.train np.prod conv2d self.D_B.compile X_A.reshape col.row.axs.imshow self.data_loader.load_batch K.mean np.load self.auxilliary col.row.axs.axis self.auxilliary.compile BatchNormalization imgs_hr.append BGAN np.arange.reshape out_f.write K.sum np.fliplr Reshape self.critic_model.compile np.ones self.combined.train_on_batch self.vgg.predict INFOGAN InstanceNormalization merge
@woctezuma
Could please help me check this issue?
May I pull a request to fix it?
Thank you very much.