Skip to content

Production-ready MLOps pipeline with automated data processing, model training, AWS integration, MongoDB storage, and Docker containerization

License

Notifications You must be signed in to change notification settings

dushyantzz/MLOps-Project

Repository files navigation

🚀 MLOps Project - End-to-End Machine Learning Pipeline

📑 Project Overview

This project implements a production-ready Machine Learning Operations (MLOps) pipeline that demonstrates industry best practices for developing, deploying, and maintaining ML models at scale. The pipeline includes automated data processing, model training, evaluation, and deployment workflows with proper logging, monitoring, and version control.

🎯 Key Objectives

  • Build a scalable and reproducible ML pipeline
  • Implement automated data validation and preprocessing
  • Create robust model training and evaluation workflows
  • Deploy models with monitoring capabilities
  • Integrate cloud services (AWS) and databases (MongoDB)
  • Containerize the application using Docker

🏗️ Technical Architecture

graph TD
    A[Data Sources] --> B[Data Ingestion]
    B --> C[Data Validation]
    C --> D[Data Transformation]
    D --> E[Model Training]
    E --> F[Model Evaluation]
    F --> G[Model Deployment]
    G --> H[Monitoring]
Loading

🛠️ Tech Stack

  • Framework: Python, Flask
  • ML Libraries: scikit-learn, pandas, numpy
  • Cloud: AWS S3
  • Database: MongoDB
  • Containerization: Docker
  • CI/CD: GitHub Actions
  • Logging: Python logging
  • Testing: pytest

📊 Features

  1. Data Pipeline:

    • Automated data ingestion
    • Data validation checks
    • Schema validation
    • Data transformation
  2. ML Pipeline:

    • Model training automation
    • Hyperparameter tuning
    • Model evaluation
    • Model registry
  3. Deployment Pipeline:

    • Model serving API
    • Batch prediction support
    • Model versioning
    • Performance monitoring

🗂️ Project Structure

├── src/ │ ├── components/ # Pipeline components │ ├── configuration/ # Configuration modules │ ├── cloud_storage/ # Cloud storage utilities (AWS) │ ├── data_access/ # Data access layer │ ├── entity/ # Entity definitions │ ├── exception/ # Custom exceptions │ ├── logger/ # Logging setup │ ├── pipeline/ # ML pipelines │ └── utils/ # Utility functions ├── config/ # Configuration files ├── notebook/ # Jupyter notebooks ├── artifact/ # Model artifacts ├── static/ # Static files └── template/ # Project templates

⭐ Features

  • 🔄 Automated ML Pipeline
  • 📊 Data Ingestion and Validation
  • 🔍 Data Transformation
  • 🤖 Model Training
  • 📈 Model Evaluation
  • 🚀 Model Deployment
  • ☁️ AWS Integration
  • 📦 MongoDB Integration
  • 🐳 Docker Support

🔧 Prerequisites

  • Python 3.8+
  • Docker
  • AWS Account (for cloud storage)
  • MongoDB

⚙️ Installation

  1. Clone the repository
git clone https://github.com/yourusername/MLOps-Project.git
cd MLOps-Project

About

Production-ready MLOps pipeline with automated data processing, model training, AWS integration, MongoDB storage, and Docker containerization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published