-
Notifications
You must be signed in to change notification settings - Fork 26
Description
Hi @dmphillippo,
I am working on a ML-NMR on survival outcome and I had few questions about the function predict.stan_nma_surv from the multinma package 0.7.1.
I wanted to compute absolute effects estimates (median survival) for a new population. What is the baseline argument to plug in the function ? Should we always give a baseline_trt argument ? I had a new population with specific baseline characteristics but not associated Kaplan-Meier curves.
Regarding this baseline argument, it seems to have an important impact on the predicted median survival time. In the vignette about new diagnosed multiple myeloma, the median survival ranged from 1.76 to 2.81 (see the code from your vignette below). In the model I am running, a difference of few months is found depending on the target populations chosen, even when considering a model without covariates. For some target populations (taken directly from the included studies), predicted median survival times seem unrealisitc. How can I reduce these high differences? Is there another parameter to take into account to better control the baseline effect?
Thanks,
(medsurv <- predict(ndmm_fit, type = "median"))
#> Warning: Evaluating M-spline at times beyond the boundary knots.
#> Evaluating M-spline at times beyond the boundary knots.
#> Evaluating M-spline at times beyond the boundary knots.
#> Evaluating M-spline at times beyond the boundary knots.
#> -------------------------------------------------------------- Study: Attal2012 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Attal2012: Pbo] 2.41 0.13 2.17 2.33 2.41 2.50 2.67 5533 3109 1
#> pred[Attal2012: Len] 3.89 0.20 3.50 3.76 3.90 4.02 4.29 6980 3079 1
#> pred[Attal2012: Thal] 2.69 0.30 2.17 2.49 2.67 2.87 3.34 3590 3103 1
#>
#> ----------------------------------------------------------- Study: McCarthy2012 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[McCarthy2012: Pbo] 2.81 0.16 2.51 2.70 2.81 2.92 3.14 4700 3412 1
#> pred[McCarthy2012: Len] 4.64 0.27 4.13 4.45 4.63 4.82 5.17 6116 3226 1
#> pred[McCarthy2012: Thal] 3.20 0.34 2.58 2.97 3.19 3.42 3.91 4287 3134 1
#>
#> ------------------------------------------------------------ Study: Palumbo2014 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Palumbo2014: Pbo] 1.86 0.18 1.52 1.73 1.85 1.98 2.25 5166 3450 1
#> pred[Palumbo2014: Len] 3.72 0.39 3.03 3.45 3.70 3.96 4.55 6734 3356 1
#> pred[Palumbo2014: Thal] 2.30 0.37 1.66 2.03 2.27 2.53 3.09 4463 3521 1
#>
#> ------------------------------------------------------------ Study: Jackson2019 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Jackson2019: Pbo] 2.04 0.11 1.83 1.96 2.04 2.11 2.26 196 2566 1.02
#> pred[Jackson2019: Len] 4.21 0.20 3.83 4.06 4.20 4.35 4.62 125 2626 1.03
#> pred[Jackson2019: Thal] 2.60 0.32 2.04 2.37 2.58 2.81 3.29 4478 3345 1.00
#>
#> ------------------------------------------------------------- Study: Morgan2012 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Morgan2012: Pbo] 1.77 0.16 1.47 1.66 1.76 1.88 2.12 1912 3489 1.01
#> pred[Morgan2012: Len] 4.09 0.57 3.17 3.69 4.03 4.41 5.37 3155 3106 1.01
#> pred[Morgan2012: Thal] 2.30 0.21 1.92 2.15 2.29 2.43 2.74 4889 3545 1.00