-
Notifications
You must be signed in to change notification settings - Fork 96
Open
Description
def get_dataset(dataset, data_path):
if dataset == 'MNIST':
channel = 1
im_size = (28, 28)
num_classes = 10
mean = [0.1307]
std = [0.3081]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.MNIST(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.MNIST(data_path, train=False, download=True, transform=transform)
class_names = [str(c) for c in range(num_classes)]
elif dataset == 'FashionMNIST':
channel = 1
im_size = (28, 28)
num_classes = 10
mean = [0.2861]
std = [0.3530]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.FashionMNIST(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.FashionMNIST(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
elif dataset == 'SVHN':
channel = 3
im_size = (32, 32)
num_classes = 10
mean = [0.4377, 0.4438, 0.4728]
std = [0.1980, 0.2010, 0.1970]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.SVHN(data_path, split='train', download=True, transform=transform) # no augmentation
dst_test = datasets.SVHN(data_path, split='test', download=True, transform=transform)
class_names = [str(c) for c in range(num_classes)]
elif dataset == 'CIFAR10':
channel = 3
im_size = (32, 32)
num_classes = 10
mean = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.CIFAR10(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.CIFAR10(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
elif dataset == 'CIFAR100':
channel = 3
im_size = (32, 32)
num_classes = 100
mean = [0.5071, 0.4866, 0.4409]
std = [0.2673, 0.2564, 0.2762]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.CIFAR100(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.CIFAR100(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
Metadata
Metadata
Assignees
Labels
No labels