Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
198 changes: 198 additions & 0 deletions swanlab/integration/mmengine.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
"""
For adaptation to the mmengine framework, this adaptation also applies to frameworks such as mmdetection, xtuner, etc.
Copy link
Member

@SAKURA-CAT SAKURA-CAT Apr 28, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

我觉得以后都可以把一些测试样例代码放在这,比如集成那边 @Zeyi-Lin

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的

, which use mmengine as the engine. By setting 'vis_backends' to 'swanlab' in the config file, experiment logs can be
uploaded to SwanLab or viewed using the local version of SwanLab. Detailed configuration file changes are as follows:
------config.py in mmengine------
...
custom_imports = dict(
imports=["swanlab.integration.mmengine"], allow_failed_imports=False
)
vis_backends = [
dict(
type="SwanlabVisBackend",
save_dir="./swanlog_save_path", # swanlab save path
init_kwargs={ # swanlab.init args
"project": "YourProject ", # project name on swanlab
"experiment_name": "YourExperiment", # experiment name on swanlab
"description": "have fun", # experiment description (can be null)
"workspace": "YourOrganization", # Your Organization on swanlab
# "cloud": False, # Upload to cloud
},
),
]
...
---------------------------------
"""

import os
from typing import Any, Callable, List, Optional, Sequence, Union

import numpy as np
import torch

try:
import mmengine
except:
raise ValueError(
"This module requires mmengine to be installed. Please install it with command: \n pip install mmengine."
"\nMore details can be found at https://mmengine.readthedocs.io/en/latest/get_started/installation.html"
)

from mmengine.registry import VISBACKENDS
from mmengine.visualization.vis_backend import BaseVisBackend, force_init_env
from mmengine.config import Config


@VISBACKENDS.register_module()
class SwanlabVisBackend(BaseVisBackend):
"""Swanlab visualization backend class for mmengine.
Examples:
>>> from mmengine.visualization import SwanlabVisBackend
>>> import numpy as np
>>> Swanlab_vis_backend = SwanlabVisBackend()
>>> img=np.random.randint(0, 256, size=(10, 10, 3))
>>> Swanlab_vis_backend.add_image('img', img)
>>> Swanlab_vis_backend.add_scaler('mAP', 0.6)
>>> Swanlab_vis_backend.add_scalars({'loss': [1, 2, 3],'acc': 0.8})
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> Swanlab_vis_backend.add_config(cfg)

Args:
save_dir (str, optional): The root directory to save the files
produced by the visualizer. Default used './swanlab'
init_kwargs (dict, optional): Swanlab initialization
input parameters.
See `swanlab.init <NEED UPDATE>`_ for
details. Defaults to None.
"""

def __init__(
self,
save_dir: str,
init_kwargs: Optional[dict] = None,
):
self._save_dir = save_dir
self._env_initialized = False
self._init_kwargs = init_kwargs

@force_init_env
def experiment(self) -> Any:
"""Return the experiment object associated with this visualization
backend.

The experiment attribute can get the swanlab backend. If you want
to write other data, such as writing a table, you can directly get
the visualization backend through experiment.
"""
return self._swanlab

def _init_env(self) -> Any:
"""Setup env for swanlab."""
if not os.path.exists(self._save_dir):
os.makedirs(self._save_dir, exist_ok=True) # type: ignore
if self._init_kwargs is None:
self._init_kwargs = {"logdir": self._save_dir}
else:
self._init_kwargs.setdefault("logdir", self._save_dir)
try:
import swanlab
except ImportError:
raise ImportError('Please run "pip install swanlab" to install swanlab')

swanlab.init(**self._init_kwargs)
self._swanlab = swanlab

@force_init_env
def add_config(self, config: Config, **kwargs) -> None:
"""Record the config to swanlab.

Args:
config (Config): The Config object
"""
def repack_dict(a, prefix=""):
"""
Unpack Nested Dictionary func
"""
new_dict = dict()
for key, value in a.items():
key = str(key)
if isinstance(value, dict):
if prefix != "":
new_dict.update(repack_dict(value, f"{prefix}/{key}"))
else:
new_dict.update(repack_dict(value, key))
elif isinstance(value, list) or isinstance(value, tuple):
if all(not isinstance(element, dict) for element in value):
new_dict[key] = value
else:
for i, item in enumerate(value):
new_dict.update(repack_dict(item, f"{key}[{i}]"))
elif prefix != "":
new_dict[f"{prefix}/{key}"] = value
else:
new_dict[key] = value
return new_dict

config_dict = config.to_dict()
self._swanlab.config.update(repack_dict(config_dict))

@force_init_env
def add_graph(self, model: torch.nn.Module, data_batch: Sequence[dict], **kwargs) -> None:
"""Record the model graph to swanlab.

Args:
model (torch.nn.Module): Model to draw.
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
# todo: waiting for update
pass

@force_init_env
def add_image(self, name: str, image: np.ndarray, step: int = 0, **kwargs) -> None:
"""Record the image to swanlab.

Args:
name (str): The image identifier.
image (np.ndarray): The image to be saved. The format
should be RGB. Defaults to None.
step (int): Global step value to record. Defaults to 0.
"""
image = self._swanlab.Image(image)
self._swanlab.log({name: image}, step=step)

@force_init_env
def add_scalar(self, name: str, value: Union[int, float], step: int = 0, **kwargs) -> None:
"""Record the scalar to swanlab.

Args:
name (str): The scalar identifier.
value (int, float): Value to save.
step (int): Global step value to record. Defaults to 0.
"""
self._swanlab.log({name: value}, step=step)

@force_init_env
def add_scalars(
self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs,
) -> None:
"""Record the scalars' data.

Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Defaults to 0.
file_path (str, optional): The scalar's data will be
saved to the `file_path` file at the same time
if the `file_path` parameter is specified.
Defaults to None.
"""
self._swanlab.log(scalar_dict, step=step)

def close(self) -> None:
"""close an opened swanlab object."""
if hasattr(self, "_swanlab"):
self._swanlab.finish()