Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions raft/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,13 @@ This details the command and process used to generate the example dataset found
```bash
python3 raft.py --datapath sample_data/United_States_PDF.pdf --output ./sample_ds4 --distractors 4 --doctype pdf --chunk_size 512 --questions 5 --openai_key OPENAI_KEY
```
### Usage with Completely locally using hugging-face models

This details the command and process used to generate the example dataset found in `./sample_ds4`. The document is a pdf of the Wikipedia page on the United States of America.
To run the script completely locally use
```
python3 raft_local.py --datapath sample_data/UC_Berkeley_short.pdf --output ./sample_ds4 --chunk_size 512 --questions 5 --doctype pdf --fast
```

#### 1. Chunk generation
RAFT takes pdf and divides text into chunks of size 512 tokens. A sample chunk:
Expand Down
310 changes: 310 additions & 0 deletions raft/raft_local.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,310 @@
import logging
from typing import Literal, Any
import argparse
import json
import PyPDF2
import random
import os, shutil
from math import ceil
from datasets import Dataset, concatenate_datasets
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
import torch
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("huggingface_script")

# Document type literals
DocType = Literal["api", "pdf", "json", "txt"]

# Every N chunks, save a checkpoint
N = 15

def get_args() -> argparse.Namespace:
"""
Parses and returns the command line arguments specified by the user.
"""
parser = argparse.ArgumentParser()

parser.add_argument("--datapath", type=str, default="", help="The path at which the document is located")
parser.add_argument("--output", type=str, default="./", help="The path at which to save the dataset")
parser.add_argument("--output-format", type=str, default="hf", help="Format to convert the dataset to. Defaults to hf.")
parser.add_argument("--output-type", type=str, default="jsonl", help="Type to export the dataset to. Defaults to jsonl.")
parser.add_argument("--distractors", type=int, default=3, help="The number of distractor documents to include per data point / triplet")
parser.add_argument("--p", type=float, default=1.0, help="The percentage that the oracle document is included in the context")
parser.add_argument("--questions", type=int, default=5, help="The number of data points / triplets to generate per chunk")
parser.add_argument("--chunk_size", type=int, default=512, help="The size of each chunk in number of tokens")
parser.add_argument("--doctype", type=str, default="pdf", help="The type of the document", choices=["pdf", "txt", "json", "api"])
parser.add_argument("--fast", action="store_true", help="Run the script in fast mode (no recovery implemented)")

args = parser.parse_args()
return args

def get_chunks(file_path: str, doctype: DocType = "pdf", chunk_size: int = 512) -> list[str]:
"""
Takes in a `file_path` and `doctype`, retrieves the document, breaks it down into chunks of size
`chunk_size`, and returns the chunks as a list of strings.
"""
chunks = []

logger.info(f"Retrieving chunks from {file_path} of type {doctype}")

if doctype == "api":
# Load API documentation and process it
with open(file_path) as f:
api_docs_json = json.load(f)
chunks = [str(api_doc_json) for api_doc_json in api_docs_json]

else:
if doctype == "json":
# Load JSON document
with open(file_path, 'r') as f:
data = json.load(f)
text = data["text"]
elif doctype == "pdf":
# Load PDF and extract text
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
num_pages = len(reader.pages)
for page_num in range(num_pages):
page = reader.pages[page_num]
text += page.extract_text()
elif doctype == "txt":
# Load plain text document
with open(file_path, 'r') as file:
text = file.read()
else:
raise TypeError("Document is not one of the accepted types: api, pdf, json, txt")

# Split the text into chunks
num_chunks = ceil(len(text) / chunk_size)
logger.info(f"Splitting text into {num_chunks} chunks.")
for i in range(0, len(text), chunk_size):
chunks.append(text[i:i + chunk_size])

return chunks

# def generate_instructions_hf(chunk: str, x: int = 5, model_name: str = "t5-small") -> list[str]:
# """
# Uses a Hugging Face model to generate `x` questions based on the given text chunk.
# """
# # Load the Hugging Face model and tokenizer for question generation
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

# input_text = f"Generate a question based on the following text: {chunk}"
# inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding="longest")

# questions = []
# for _ in range(x):
# output = model.generate(inputs.input_ids, max_length=64)
# question = tokenizer.decode(output[0], skip_special_tokens=True)
# questions.append(question)

# return questions


# def generate_label_hf(question: str, context: str, model_name: str = "deepset/roberta-base-squad2") -> str:
# """
# Uses a Hugging Face model to generate an answer to the given question based on the context.
# """
# # Load the Hugging Face model and tokenizer for question-answering
# question_answering_pipeline = pipeline("question-answering", model=model_name)

# result = question_answering_pipeline(question=question, context=context)

# return result['answer']

def generate_instructions_hf(chunk: str, x: int = 5, model_name: str = "t5-small") -> list[str]:
"""
Uses a Hugging Face model to generate `x` questions based on the given text chunk, utilizing the GPU if available.
"""
# Load the Hugging Face model and tokenizer for question generation
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

input_text = f"Generate questions based on the following text: {chunk}"
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding="longest").to(device)

outputs = model.generate(
inputs.input_ids,
max_length=64,
num_beams=x, # Using beam search with `x` beams
num_return_sequences=x # Returning `x` sequences
)

questions = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]

return questions

def generate_label_hf(question: str, context: str, model_name: str = "deepset/roberta-base-squad2") -> str:
"""
Uses a Hugging Face model to generate an answer to the given question based on the context, utilizing the GPU if available.
"""
# Load the Hugging Face model and tokenizer for question-answering
question_answering_pipeline = pipeline("question-answering", model=model_name, device=0 if torch.cuda.is_available() else -1)

result = question_answering_pipeline(question=question, context=context)

return result['answer']

def add_chunk_to_dataset(
chunks: list[str],
chunk: str,
doctype: DocType = "api",
x: int = 5,
num_distract: int = 3,
p: float = 0.8,
model_name_qg: str = "t5-small",
model_name_qa: str = "deepset/roberta-base-squad2"
) -> None:
"""
Given a chunk, create {Q, A, D} triplets and add them to the dataset using Hugging Face models.
"""
global ds
i = chunks.index(chunk)

# Use the Hugging Face model to generate questions
qs = generate_instructions_hf(chunk, x, model_name=model_name_qg)
for q in qs:
datapt = {
"id": None,
"type": None,
"question": None,
"context": None,
"oracle_context": None,
"cot_answer": None
}

datapt["id"] = f"seed_task_{0 if not ds else ds.num_rows}"
datapt["type"] = "api call" if doctype == "api" else "general"
datapt["question"] = q

# Create distractor documents
docs = [chunk]
indices = list(range(0, len(chunks)))
indices.remove(i)
for j in random.sample(indices, num_distract):
docs.append(chunks[j])
# Decide whether to add oracle document
oracle = random.uniform(0, 1) < p
if not oracle:
docs[0] = chunks[random.sample(indices, 1)[0]]
random.shuffle(docs)

d = {
"title": ["placeholder_title"] * (num_distract + 1),
"sentences": docs
}
datapt["context"] = d
datapt["oracle_context"] = chunk

# Add the answer generated by the Hugging Face model
datapt["cot_answer"] = generate_label_hf(q, chunk, model_name=model_name_qa)

# Construct model instruction
context = ""
for doc in docs:
context += "<DOCUMENT>" + str(doc) + "</DOCUMENT>\n"
context += q
datapt["instruction"] = context

# Add to dataset
if not ds:
# Initialize dataset
datapt["id"] = [datapt["id"]]
datapt["type"] = [datapt["type"]]
datapt["question"] = [datapt["question"]]
datapt["context"] = [datapt["context"]]
datapt["oracle_context"] = [datapt["oracle_context"]]
datapt["cot_answer"] = [datapt["cot_answer"]]
datapt["instruction"] = [datapt["instruction"]]
ds = Dataset.from_dict(datapt)
else:
ds = ds.add_item(datapt)

def save_checkpoint(state, filename):
"""
Saves the current state of processing to a file for recovery.
"""
with open(filename, 'w') as f:
f.write(str(state))

def load_checkpoint(filename):
"""
Loads the processing state from a checkpoint file.
"""
with open(filename, 'r') as f:
return int(f.read())

def main():
global ds

# Get command line arguments
args = get_args()

CHUNK_SIZE = args.chunk_size
NUM_DISTRACT_DOCS = args.distractors

# Split the document into chunks
chunks = get_chunks(args.datapath, args.doctype, CHUNK_SIZE)

ds = None

num_chunks = len(chunks)

if not args.fast:
start = 0
if os.path.exists("checkpoint.txt"):
start = int(load_checkpoint("checkpoint.txt"))

for i in range((start // N) * N, len(chunks)):
chunk = chunks[i]
save_checkpoint(i, "checkpoint.txt")

perc = ceil(i / num_chunks * 100)
logger.info(f"Adding chunk {i}/{num_chunks}")
add_chunk_to_dataset(chunks, chunk, args.doctype, args.questions, NUM_DISTRACT_DOCS)

if (i + 1) % N == 0:
ds.save_to_disk(args.output + "-checkpoints-" + str(i))
ds = None

if ds:
ds.save_to_disk(args.output + "-checkpoints-last")

ds_list = []

for filename in os.listdir(os.path.dirname(args.output)):
if "-checkpoints-" in filename:
for f in os.listdir(os.path.dirname(args.output) + "/" + filename):
if f.endswith(".arrow"):
ds_list.append(Dataset.from_file(os.path.dirname(args.output) + "/" + filename + "/" + f))

ds = concatenate_datasets(ds_list)
else:
for i, chunk in enumerate(chunks):
perc = ceil(i / num_chunks * 100)
logger.info(f"Adding chunk {i}/{num_chunks}")
add_chunk_to_dataset(chunks, chunk, args.doctype, args.questions, NUM_DISTRACT_DOCS)

# Save the final dataset
ds.save_to_disk(args.output)

# Save as .jsonl format (dummy functionality)
# Implement a conversion function if needed, this is just a placeholder
logger.info("Converting dataset to the desired format...")

if not args.fast:
os.remove("checkpoint.txt")
for filename in os.listdir(os.path.dirname(args.output)):
if "-checkpoints-" in filename:
shutil.rmtree(os.path.dirname(args.output) + "/" + filename)

if __name__ == "__main__":
logger.info("Starting the Hugging Face processing script...")
main()
Binary file modified raft/requirements.txt
Binary file not shown.