-
Notifications
You must be signed in to change notification settings - Fork 3
Description
For a configurable BerTopic plugin, consider these steps for flexibility and ease of setup:
1. Configuration File
Using a YAML configuration file is an effective way to manage pre-processing, model setup, and logging options. This allows for easy tweaking without modifying the code. Here's a sample structure in YAML:
preprocessing:
stopwords: true
punctuation: true
lowercase: true
bertopic:
min_topic_size: 10
embedding_model: "all-MiniLM-L6-v2"
...
...
logging:
verbosity: "info" # Options: debug, info, warning, error
You can read this configuration file in your Python script with a library like PyYAML
for YAML.
2. Script Argument Overrides
Allow command-line arguments to override config values. Using argparse
, you can parse specific options, e.g., logging verbosity, pre-processing steps, or model settings. These arguments can dynamically override the config file settings if provided.
Example argument setup:
import argparse
import yaml
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--stopwords", action="store_true", help="Enable stopword removal")
parser.add_argument("--punctuation", action="store_true", help="Enable punctuation removal")
parser.add_argument("--verbosity", choices=["debug", "info", "warning", "error"], help="Set logging verbosity")
return parser.parse_args()
args = parse_arguments()
4. Configurable Logging
For logging, use Python’s logging
module. Map verbosity levels from the config or arguments.
import logging
logging.basicConfig(level=getattr(logging, verbosity.upper()))
logger = logging.getLogger(__name__)
logger.info("BerTopic model initialized.")
logger.debug("Debugging details here if verbosity is set to debug.")