This AI Hiring Suite is basically a full-stack, AI-driven, end-to-end recruitment automation platform with real-time interview capability, calendar scheduling, assessments, fairness checks, and a proper modern dev stack.
- apps/web: Frontend (React, Tailwind, Vite)
- apps/api: Backend (Node, Express, TypeScript)
- packages/shared: Shared types
- scripts: Seed jobs
- postman: API requests
- infra: Infrastructure
-
Clone repository:
git clone cd ai-hiring-suite
-
Install dependencies:
npm install cd apps/web && npm install cd ../api && npm install
-
Setup environment:
Copy .env.example → .env
Fill in OpenAI, Cohere, Airtable, SMTP, Supabase keys.
-
Run locally (frontend + backend): npm run dev
-
Seed Jobs: cd scripts npm run ts-node seed_jobs.ts
-
Docker docker-compose up --build
7.Features
Resume parsing & candidate profile extraction
AI-generated interview questions & evaluation
Video/audio interview recording + STT transcription
Calendar scheduling & email notifications
Vector search & reranking for job matching
Admin dashboard & analytics
-
Environment Variables
OPENAI_API_KEY
COHERE_API_KEY
AIRTABLE_API_KEY
AIRTABLE_BASE_ID
SMTP_HOST, SMTP_PORT, SMTP_USER, SMTP_PASS
SUPABASE_URL, SUPABASE_KEY
DATABASE_URL
-
Verification Steps
Run ./run_all.sh to verify Docker, frontend, backend, and DB.
Run ./full_check.sh to test resume upload, AI chains, interview flow, and calendar/email.
Use Postman collection for API tests.
-
Deployment
Use Docker + cloud provider (AWS, GCP, Azure, Railway, Supabase)
Set all .env variables in cloud
Expose frontend (5173) & backend (4000) ports
-
Infra Folder
Use this folder to add:
- Terraform scripts
- AWS S3 bucket provisioning
- Supabase instance setup
- IAM roles and policies
- Any other infrastructure automation