-
Notifications
You must be signed in to change notification settings - Fork 1.9k
[TTS] Add support for finetuning speedyspeech #1302
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
75c2bd5
fix link_wav.py path, test=tts
jerryuhoo fcc34e3
[tts] add gen_gta_mel.py for finetuning speedypeech, test=tts
jerryuhoo 61b68ed
deal with exceptions of link_wav.py
jerryuhoo be99807
Add durations to gen_gta_mel.py inference
jerryuhoo 1e710ef
Update link_wav.py, test=tts
jerryuhoo 111a452
Fix the code format, test=tts
jerryuhoo File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# generate mels using durations.txt | ||
# for mb melgan finetune | ||
# 长度和原本的 mel 不一致怎么办? | ||
import argparse | ||
import os | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import paddle | ||
import yaml | ||
from tqdm import tqdm | ||
from yacs.config import CfgNode | ||
|
||
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur | ||
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence | ||
from paddlespeech.t2s.frontend.zh_frontend import Frontend | ||
from paddlespeech.t2s.models.speedyspeech import SpeedySpeech | ||
from paddlespeech.t2s.models.speedyspeech import SpeedySpeechInference | ||
from paddlespeech.t2s.modules.normalizer import ZScore | ||
|
||
|
||
def evaluate(args, speedyspeech_config): | ||
rootdir = Path(args.rootdir).expanduser() | ||
assert rootdir.is_dir() | ||
|
||
# construct dataset for evaluation | ||
with open(args.phones_dict, "r") as f: | ||
phn_id = [line.strip().split() for line in f.readlines()] | ||
vocab_size = len(phn_id) | ||
print("vocab_size:", vocab_size) | ||
|
||
phone_dict = {} | ||
for phn, id in phn_id: | ||
phone_dict[phn] = int(id) | ||
|
||
with open(args.tones_dict, "r") as f: | ||
tone_id = [line.strip().split() for line in f.readlines()] | ||
tone_size = len(tone_id) | ||
print("tone_size:", tone_size) | ||
|
||
frontend = Frontend( | ||
phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict) | ||
|
||
if args.speaker_dict: | ||
with open(args.speaker_dict, 'rt') as f: | ||
spk_id_list = [line.strip().split() for line in f.readlines()] | ||
spk_num = len(spk_id_list) | ||
else: | ||
spk_num = None | ||
|
||
model = SpeedySpeech( | ||
vocab_size=vocab_size, | ||
tone_size=tone_size, | ||
**speedyspeech_config["model"], | ||
spk_num=spk_num) | ||
|
||
model.set_state_dict( | ||
paddle.load(args.speedyspeech_checkpoint)["main_params"]) | ||
model.eval() | ||
|
||
stat = np.load(args.speedyspeech_stat) | ||
mu, std = stat | ||
mu = paddle.to_tensor(mu) | ||
std = paddle.to_tensor(std) | ||
speedyspeech_normalizer = ZScore(mu, std) | ||
|
||
speedyspeech_inference = SpeedySpeechInference(speedyspeech_normalizer, | ||
model) | ||
speedyspeech_inference.eval() | ||
|
||
output_dir = Path(args.output_dir) | ||
output_dir.mkdir(parents=True, exist_ok=True) | ||
|
||
sentences, speaker_set = get_phn_dur(args.dur_file) | ||
merge_silence(sentences) | ||
|
||
if args.dataset == "baker": | ||
wav_files = sorted(list((rootdir / "Wave").rglob("*.wav"))) | ||
# split data into 3 sections | ||
num_train = 9800 | ||
num_dev = 100 | ||
train_wav_files = wav_files[:num_train] | ||
dev_wav_files = wav_files[num_train:num_train + num_dev] | ||
test_wav_files = wav_files[num_train + num_dev:] | ||
elif args.dataset == "aishell3": | ||
sub_num_dev = 5 | ||
wav_dir = rootdir / "train" / "wav" | ||
train_wav_files = [] | ||
dev_wav_files = [] | ||
test_wav_files = [] | ||
for speaker in os.listdir(wav_dir): | ||
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav"))) | ||
if len(wav_files) > 100: | ||
train_wav_files += wav_files[:-sub_num_dev * 2] | ||
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev] | ||
test_wav_files += wav_files[-sub_num_dev:] | ||
else: | ||
train_wav_files += wav_files | ||
|
||
train_wav_files = [ | ||
os.path.basename(str(str_path)) for str_path in train_wav_files | ||
] | ||
dev_wav_files = [ | ||
os.path.basename(str(str_path)) for str_path in dev_wav_files | ||
] | ||
test_wav_files = [ | ||
os.path.basename(str(str_path)) for str_path in test_wav_files | ||
] | ||
|
||
for i, utt_id in enumerate(tqdm(sentences)): | ||
phones = sentences[utt_id][0] | ||
durations = sentences[utt_id][1] | ||
speaker = sentences[utt_id][2] | ||
# 裁剪掉开头和结尾的 sil | ||
if args.cut_sil: | ||
if phones[0] == "sil" and len(durations) > 1: | ||
durations = durations[1:] | ||
phones = phones[1:] | ||
if phones[-1] == 'sil' and len(durations) > 1: | ||
durations = durations[:-1] | ||
phones = phones[:-1] | ||
|
||
phones, tones = frontend._get_phone_tone(phones, get_tone_ids=True) | ||
if tones: | ||
tone_ids = frontend._t2id(tones) | ||
tone_ids = paddle.to_tensor(tone_ids) | ||
if phones: | ||
phone_ids = frontend._p2id(phones) | ||
phone_ids = paddle.to_tensor(phone_ids) | ||
|
||
if args.speaker_dict: | ||
speaker_id = int( | ||
[item[1] for item in spk_id_list if speaker == item[0]][0]) | ||
speaker_id = paddle.to_tensor(speaker_id) | ||
else: | ||
speaker_id = None | ||
|
||
durations = paddle.to_tensor(np.array(durations)) | ||
durations = paddle.unsqueeze(durations, axis=0) | ||
|
||
# 生成的和真实的可能有 1, 2 帧的差距,但是 batch_fn 会修复 | ||
# split data into 3 sections | ||
|
||
wav_path = utt_id + ".wav" | ||
|
||
if wav_path in train_wav_files: | ||
sub_output_dir = output_dir / ("train/raw") | ||
elif wav_path in dev_wav_files: | ||
sub_output_dir = output_dir / ("dev/raw") | ||
elif wav_path in test_wav_files: | ||
sub_output_dir = output_dir / ("test/raw") | ||
|
||
sub_output_dir.mkdir(parents=True, exist_ok=True) | ||
|
||
with paddle.no_grad(): | ||
mel = speedyspeech_inference( | ||
phone_ids, tone_ids, durations=durations, spk_id=speaker_id) | ||
np.save(sub_output_dir / (utt_id + "_feats.npy"), mel) | ||
|
||
|
||
def main(): | ||
# parse args and config and redirect to train_sp | ||
parser = argparse.ArgumentParser( | ||
description="Synthesize with speedyspeech & parallel wavegan.") | ||
parser.add_argument( | ||
"--dataset", | ||
default="baker", | ||
type=str, | ||
help="name of dataset, should in {baker, ljspeech, vctk} now") | ||
parser.add_argument( | ||
"--rootdir", default=None, type=str, help="directory to dataset.") | ||
parser.add_argument( | ||
"--speedyspeech-config", type=str, help="speedyspeech config file.") | ||
parser.add_argument( | ||
"--speedyspeech-checkpoint", | ||
type=str, | ||
help="speedyspeech checkpoint to load.") | ||
parser.add_argument( | ||
"--speedyspeech-stat", | ||
type=str, | ||
help="mean and standard deviation used to normalize spectrogram when training speedyspeech." | ||
) | ||
|
||
parser.add_argument( | ||
"--phones-dict", | ||
type=str, | ||
default="phone_id_map.txt", | ||
help="phone vocabulary file.") | ||
parser.add_argument( | ||
"--tones-dict", | ||
type=str, | ||
default="tone_id_map.txt", | ||
help="tone vocabulary file.") | ||
parser.add_argument( | ||
"--speaker-dict", type=str, default=None, help="speaker id map file.") | ||
|
||
parser.add_argument( | ||
"--dur-file", default=None, type=str, help="path to durations.txt.") | ||
parser.add_argument("--output-dir", type=str, help="output dir.") | ||
parser.add_argument( | ||
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") | ||
|
||
def str2bool(str): | ||
return True if str.lower() == 'true' else False | ||
|
||
parser.add_argument( | ||
"--cut-sil", | ||
type=str2bool, | ||
default=True, | ||
help="whether cut sil in the edge of audio") | ||
|
||
args = parser.parse_args() | ||
|
||
if args.ngpu == 0: | ||
paddle.set_device("cpu") | ||
elif args.ngpu > 0: | ||
paddle.set_device("gpu") | ||
else: | ||
print("ngpu should >= 0 !") | ||
|
||
with open(args.speedyspeech_config) as f: | ||
speedyspeech_config = CfgNode(yaml.safe_load(f)) | ||
|
||
print("========Args========") | ||
print(yaml.safe_dump(vars(args))) | ||
print("========Config========") | ||
print(speedyspeech_config) | ||
|
||
evaluate(args, speedyspeech_config) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这一坨如果想改的话感觉也可以用 expand 函数简化一下(这里确实是我之前做的不好)
另外 expand 函数里面的 np.sum .zeros .max 也可以参照这里换成 paddle.xxx, 这样最后 M = paddle.to_tensor(M, dtype=encodings.dtype) 就不用 to_tensor 了(to_tensor 在动转静的时候可能会挂,如果你在这里直接把这一坨换成 expand 但是没有吧 numpy 的函数换掉的话,可能动转静会挂),不想改也不要紧,等你这个合了之后我改一下(你这里的用法算是提醒我了),改好之后 艾特 你
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
那先合并吧,麻烦您修改了~