Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

param="model_item=baichuan-inc-baichaun-2-13b_pretrain "
param+="run_mode=DP1_MP2_PP4_1F1B_Sharding8_Stage2 "
param+="device_num=N4C32 "
param+="global_batch_size=32 "
param+="nnodes=4 "
param+="model_type=baichuan2_13b "

cd ./tests
bash ./test_tipc/static/auto_parallel/baichuan2/benchmark_common/prepare.sh

bash -c "${param} bash ./test_tipc/static/auto_parallel/baichuan2/benchmark_common/run_benchmark.sh"
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

python -m pip install -r ../requirements.txt
python -m pip install -r ../requirements-dev.txt

# install fused_ln custom ops
cd ../slm/model_zoo/gpt-3/external_ops/
python setup.py install
cd -

# install fast_dataindex
cd ../llm/auto_parallel/llama
python -m pip install fast_dataindex

# download data
wget https://bj.bcebos.com/paddlenlp/models/transformers/llama/data/llama_openwebtext_100k_ids.npy
wget https://bj.bcebos.com/paddlenlp/models/transformers/llama/data/llama_openwebtext_100k_idx.npz
mkdir data
mv llama_openwebtext_100k_ids.npy ./data
mv llama_openwebtext_100k_idx.npz ./data

# mv pretrain_config
rm -rf pretrain_config_*
cp -r ../../../tests/test_tipc/static/auto_parallel/baichuan2/pretrain_config_* ./
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
#!/usr/bin/env bash

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Test training benchmark for a model.
# Usage:bash benchmark/run_benchmark.sh ${model_name_or_path} ${per_device_train_batch_size} ${tensor_parallel_degree} ${pipeline_parallel_degree} ${virtual_pp_degree} ${sequence_parallel} ${sharding_parallel_degree} ${sharding} ${recompute} ${run_mode} ${device_num}
function _set_params(){
model_item=${model_item:-"baichuan-inc-baichaun-2-13b_pretrain"}
run_mode=${run_mode:-"MP4-PP2"}
device_num=${device_num:-"N4C32"}
global_batch_size=${global_batch_size:-64}
fp_item="bf16"
MODEL_TYPE=${model_type:-"baichuan2_13b"}

ip_lists=($(echo $TRAINER_INSTANCES | tr ',' ' '))
master_ip=${ip_lists[0]}
nnodes=${nnodes:-1}

base_batch_size=${global_batch_size}
profiling=${PROFILING:-"false"} # (必选) Profiling 开关,默认关闭,通过全局变量传递
model_repo="PaddleNLP" # (必选) 模型套件的名字
speed_unit="tokens/s" # (必选)速度指标单位
skip_steps=10 # (必选)解析日志,跳过模型前几个性能不稳定的step
keyword="interval_tokens_per_second_per_device:" # (必选)解析日志,筛选出性能数据所在行的关键字
convergence_key="loss:" # (可选)解析日志,筛选出收敛数据所在行的关键字 如:convergence_key="loss:"
model_mode=5 # 获取ips数据及单位,仅跳过skip_steps后计算均值,单位保持token/s不变

# 以下为通用执行命令,无特殊可不用修改
model_name=${model_item}_bs${global_batch_size}_${fp_item}_${run_mode} # (必填) 且格式不要改动,与竞品名称对齐
device=${CUDA_VISIBLE_DEVICES//,/ }
arr=(${device})
num_gpu_devices=${#arr[*]}
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # (必填) TRAIN_LOG_DIR benchmark框架设置该参数为全局变量
profiling_log_path=${PROFILING_LOG_DIR:-$(pwd)} # (必填) PROFILING_LOG_DIR benchmark框架设置该参数为全局变量
speed_log_path=${LOG_PATH_INDEX_DIR:-$(pwd)}
train_log_file=${run_log_path}/${model_repo}_${model_name}_${device_num}_log
mkdir -p $(dirname ${train_log_file})

profiling_log_file=${profiling_log_path}/${model_repo}_${model_name}_${device_num}_profiling
mkdir -p $(dirname ${profiling_log_file})

speed_log_file=${speed_log_path}/${model_repo}_${model_name}_${device_num}_speed
mkdir -p $(dirname ${speed_log_file})

OUTPUT_PATH=${run_log_path}/output
}

# 循环监控文件写入状态和进程状态
monitor_log_file() {
local log_file="$1" # 获取日志文件路径
local training_pid="$2" # 获取训练进程的 PID
local no_update_duration=0 # 初始化无更新时长计数
local last_size=0
local kill_flag_file="/tmp/monitor_killed_$training_pid"

echo "$(date '+%Y-%m-%d %H:%M:%S') 开始监控进程 $training_pid 和日志文件 $log_file..."

while true; do
sleep 5 # 每隔 5 秒检查一次日志文件

# 判断日志文件是否存在
if [ ! -f "$log_file" ]; then
echo "日志文件 $log_file 不存在,检查进程状态..."
# 如果日志文件不存在,直接判断进程是否结束
if ! ps -p $training_pid > /dev/null; then
echo "$(date '+%Y-%m-%d %H:%M:%S') 进程 $training_pid 已经结束。"
break
fi
continue # 如果文件不存在,跳过后续逻辑,继续循环
fi

# 获取当前日志文件的大小
new_size=$(stat -c %s "$log_file")

if [ "$last_size" -eq "$new_size" ]; then
# 文件大小未变化,增加无更新时长计数
no_update_duration=$((no_update_duration + 5))
echo "$(date '+%Y-%m-%d %H:%M:%S') 文件未写入..."
if [ "$no_update_duration" -ge 180 ]; then
echo "$(date '+%Y-%m-%d %H:%M:%S') 文件在过去的 3 分钟内没有继续写入,准备杀掉进程 $training_pid."
# 创建标志文件
touch "$kill_flag_file"
ls -l "$kill_flag_file"
kill -9 $training_pid # 杀掉进程
echo "$(date '+%Y-%m-%d %H:%M:%S') 进程 $training_pid 已经被杀掉。"
break
fi
else
# 文件大小有变化,重置无更新时长计数
echo "$(date '+%Y-%m-%d %H:%M:%S') 文件仍在写入..."
no_update_duration=0
last_size=$new_size
fi

# 如果训练进程已经结束,退出监控
if ! ps -p $training_pid > /dev/null; then
echo "$(date '+%Y-%m-%d %H:%M:%S') 进程 $training_pid 已经结束。"
break
fi
done
}

function _train(){
batch_size=${per_device_train_batch_size} # 如果模型跑多卡单进程时,请在_train函数中计算出多卡需要的bs

if [ -d $OUTPUT_PATH ]; then
rm -rf $OUTPUT_PATH
fi
mkdir $OUTPUT_PATH

echo "current CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}, model_name=${model_name}, device_num=${device_num}, is profiling=${profiling}"

if [ ${profiling} == "true" ];then
add_options="--profiler_options=\"batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile\""
log_file=${profiling_log_file}
else
add_options=""
log_file=${train_log_file}
fi

# Disable for hanging bug
# if [ "${tensor_parallel_degree}" != "1" ]; then
# export CUDA_DEVICE_MAX_CONNECTIONS=1
# fi

# if [ ${run_mode} == "autotuner" ]; then
# unset PADDLE_ELASTIC_JOB_ID
# unset PADDLE_TRAINER_ENDPOINTS
# unset DISTRIBUTED_TRAINER_ENDPOINTS
# unset FLAGS_START_PORT
# unset PADDLE_ELASTIC_TIMEOUT
# unset PADDLE_TRAINERS_NUM
# unset PADDLE_TRAINER_ID
# autoconfig_args="--auto_tuner_json ./auto_config_${MODEL_TYPE}/${MODEL_TYPE}_pretrain_autoconfig.json"
# else
# autoconfig_args=""
# fi

if [ ${PADDLE_TRAINER_ID} ]; then
PADDLE_RANK_OPTION=" --rank ${PADDLE_TRAINER_ID}"
else
PADDLE_RANK_OPTION=""
fi

# if [ "$autoconfig_args" != "" ]; then
# distributed_args="--master etcd://$master_ip:2379 --nnodes $nnodes:$nnodes"
# else
# distributed_args="--master $master_ip:36677 --nnodes $nnodes ${PADDLE_RANK_OPTION} --run_mode=collective"
# fi

echo "==========System Env============="
env
echo "================================="

# 以下为通用执行命令,无特殊可不用修改
case ${device_num} in
N1C8) echo "Run with: device_num=${device_num}, run_mode=${run_mode}"
train_cmd="python -u -m paddle.distributed.launch --gpus=0,1,2,3,4,5,6,7 \
--nnodes 1 --nproc_per_node 8 \
--log_dir mylog run_pretrain_auto.py \
./pretrain_config_${MODEL_TYPE}/pretrain-${MODEL_TYPE}.json"
;;
N4C32) echo "Run with: device_num=${device_num} run_mode=${run_mode}"
train_cmd="python -u -m paddle.distributed.launch --gpus=0,1,2,3,4,5,6,7 \
--log_dir mylog run_pretrain_auto.py \
./pretrain_config_${MODEL_TYPE}/pretrain-${MODEL_TYPE}.json"
;;
*) echo "Run with: device_num=${device_num}, run_mode=${run_mode}"
train_cmd="python -u -m paddle.distributed.launch --gpus=0,1,2,3,4,5,6,7 \
--log_dir mylog run_pretrain_auto.py \
./pretrain_config_${MODEL_TYPE}/pretrain-${MODEL_TYPE}.json"
;;
esac
cd ../llm/auto_parallel/llama
# rm -rf ./auto_config_${MODEL_TYPE}/*GBS*
# rm -rf ./auto_config_${MODEL_TYPE}/*auto_tuner.log
# rm -rf ./auto_config_${MODEL_TYPE}/*csv
# rm -rf ./auto_config_${MODEL_TYPE}/best_*
rm -rf mylog && rm -rf checkpoints

echo "train_cmd: ${train_cmd} log_file: ${log_file}"
timeout 40m ${train_cmd} > ${log_file} 2>&1 &
training_pid=$! # 获取后台进程的 PID

# 监控进程和日志的更新状态
monitor_log_file "$log_file" "$training_pid" &
monitor_log_file_pid=$! # 获取日志监控进程的 PID

# 等待训练进程完成
wait $training_pid
exit_code=$?

# 获取训练进程的退出码
echo "训练进程 $training_pid 的退出码是 $exit_code"

# 清理后台日志监控进程
kill $monitor_log_file_pid


if [ ${exit_code} -ne 0 ];then
echo -e "${model_name}, FAIL"
# 如果程序是主动报错退出,不是monitor_log_file函数kill掉的情况下,需要等待其它机器被kill
# 标志文件位置
kill_flag_file="/tmp/monitor_killed_$training_pid"
if [ -f "$kill_flag_file" ]; then
echo "$(date '+%Y-%m-%d %H:%M:%S') 训练进程 $training_pid 是被 monitor_log_file 函数杀掉的。"
rm -f "$kill_flag_file" # 清理标志文件
else
echo "$(date '+%Y-%m-%d %H:%M:%S') 训练进程 $training_pid 是主动报错退出的。"
sleep 120
fi
else
echo -e "${model_name}, SUCCESS"
fi

#kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
if [ ${device_num} != "N1C1" ]; then
case_path=$PWD && cd - && mkdir -p mylog # PaddleNLP/tests/mylog
cp -r ${case_path}/mylog/workerlog.* ./mylog/
fi
}

export FLAGS_selected_gpus="0,1,2,3,4,5,6,7"
export NCCL_IB_DISABLE=0
export PYTHONPATH=$(dirname "$PWD"):$PYTHONPATH
# https://github.com/PaddlePaddle/Paddle/pull/69410 合入影响
# 如不设置参数为1,则默认选择不带tensor fusion的sharding stage1版本
export FLAGS_enable_sharding_stage1_tensor_fusion=1

# 只有13b的任务需要打开CUDA_DEVICE_MAX_CONNECTIONS,7b与13b关闭
export CUDA_DEVICE_MAX_CONNECTIONS=1
export PARALLEL_CROSS_ENTROPY=true

source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params $@
#_train # 如果只产出训练log,不解析,可取消注释
_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只产出训练log可以注掉本行,提交时需打开
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
{
"model_name_or_path": "baichuan-inc/Baichuan2-13B-Base",
"tokenizer_name_or_path": "baichuan-inc/Baichuan2-13B-Base",
"input_dir": "./data",
"output_dir": "./checkpoints/baichuan2_13b_ckpts",
"split": "949,50,1",
"to_static": true,
"pipeline_parallel_degree": 2,
"tensor_parallel_degree": 4,
"virtual_pp_degree": 2,
"pipeline_schedule_mode": "1F1B",
"weight_decay": 0.01,
"warmup_ratio": 0.01,
"max_grad_norm": 0.0,
"learning_rate": 0.00003,
"min_learning_rate": 0.000003,
"max_steps": 100,
"logging_steps": 1,
"eval_steps": 10000,
"save_steps": 1000,
"continue_training": 0,
"do_train": true,
"do_eval": false,
"do_predict": false,
"disable_tqdm": true,
"save_total_limit": 2,
"device": "gpu",
"dataloader_num_workers": 4,
"distributed_dataloader": 0,
"enable_auto_parallel": 1,
"per_device_train_batch_size": 1,
"gradient_accumulation_steps": 32,
"per_device_eval_batch_size": 1,
"recompute": false,
"recompute_use_reentrant": true,
"recompute_granularity": "full",
"pp_recompute_interval": 0,
"bf16": true,
"fp16_opt_level": "O2",
"amp_master_grad": true,
"fuse_attention_ffn": true,
"fuse_attention_qkv": true,
"use_flash_attention": true,
"fused_linear": 1,
"fused_linear_param_grad_add": 1,
"use_fused_rope": true,
"use_fused_rms_norm": false,
"max_seq_length": 4096,
"sequence_parallel": false,
"sharding": "stage1",
"sharding_parallel_config": "enable_stage1_tensor_fusion enable_stage1_overlap",
"tensor_parallel_config": "enable_mp_async_allreduce",
"data_parallel_config": "enable_allreduce_avg_in_gradinent_scale gradient_sync_after_accumulate",
"pipeline_parallel_config": "enable_send_recv_overlap enable_split_backward"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

param="model_item=gpt3-13b_pretrain_dy2st "
param+="run_mode=DP1_MP2_PP4_1F1B_Sharding4_Stage1 "
param+="device_num=N4C32 "
param+="global_batch_size=32 "
param+="nnodes=4 "
param+="model_type=gpt3_13b "

cd ./tests
bash ./test_tipc/static/auto_parallel/gpt3/benchmark_common/prepare.sh

bash -c "${param} bash ./test_tipc/static/auto_parallel/gpt3/benchmark_common/run_benchmark.sh"
Loading