Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 15 additions & 14 deletions paddlenlp/trainer/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -2297,16 +2297,7 @@ def save_model(self, output_dir: Optional[str] = None, merge_tensor_parallel: Op
self.model_wrapped.get_all_parameters(convert2cpu=True)

if self.args.should_save_model_state:
unified_checkpoint_config_backup = self.args.unified_checkpoint_config
# backup and remove unified_checkpoint_config for not trine stage
if not self.is_in_train:
self.args.unified_checkpoint_config = []

self._save(output_dir=output_dir, merge_tensor_parallel=merge_tensor_parallel)

# recover unified_checkpoint_config for not trine stage
if not self.is_in_train:
self.args.unified_checkpoint_config = unified_checkpoint_config_backup
else:
if self.args.unified_checkpoint and "async_save" in self.args.unified_checkpoint_config:
os.makedirs(output_dir, exist_ok=True)
Expand Down Expand Up @@ -2584,10 +2575,9 @@ def _save(self, output_dir: Optional[str] = None, state_dict=None, merge_tensor_
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`

local_rank = int(os.getenv("PADDLE_RANK_IN_NODE", 0))
if (
strtobool(os.getenv("FLAG_LLM_PDC", "False"))
and local_rank == 0
and paddle.distributed.get_rank() == 0
and self.args.unified_checkpoint
and "async_save" in self.args.unified_checkpoint_config
):
Expand All @@ -2598,9 +2588,10 @@ def _save(self, output_dir: Optional[str] = None, state_dict=None, merge_tensor_
"ignore_save_lr_and_optim": self.args.ignore_save_lr_and_optim,
"skip_save_model_weight": "skip_save_model_weight" in self.args.unified_checkpoint_config,
}
if not os.path.exists(os.path.join(self.args.logging_dir, "async_save_info.json")):
with open(os.path.join(self.args.logging_dir, "async_save_info.json"), "w") as f:
json.dump(save_info, f)
if os.path.exists(os.path.join(self.args.logging_dir, "async_save_info.json")): # afs cannot overwrite
os.remove(os.path.join(self.args.logging_dir, "async_save_info.json"))
with open(os.path.join(self.args.logging_dir, "async_save_info.json"), "w") as f:
json.dump(save_info, f)

if self.args.should_save:
if self.tokenizer is not None:
Expand All @@ -2609,7 +2600,17 @@ def _save(self, output_dir: Optional[str] = None, state_dict=None, merge_tensor_
paddle.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))

if self.args.unified_checkpoint:
unified_checkpoint_config_backup = self.args.unified_checkpoint_config
# backup and remove unified_checkpoint_config for not trine stage
if not self.is_in_train:
self.args.unified_checkpoint_config = []

self.unified_checkpoint_handler.save_unified_checkpoint(self.model, self.optimizer, output_dir)

# recover unified_checkpoint_config for not trine stage
if not self.is_in_train:
self.args.unified_checkpoint_config = unified_checkpoint_config_backup

return

merge_tensor_parallel = merge_tensor_parallel and self.args.use_hybrid_parallel
Expand Down