Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion paddlemix/examples/llava/pretrain.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,8 +171,15 @@ def get_paddle_memory_info():
mem_gpu = (
train_result.metrics["train_mem_gpu_peaked_delta"] + train_result.metrics["train_mem_gpu_alloc_delta"]
)
logger.info(f'Memory_allocated:{memory_allocated}GB, max_memory_allocated: {max_memory_allocated}GB, memory_reserved:{memory_reserved}GB, max_memory_reserved: {max_memory_reserved}GB \n')
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

callback的on_log方法中已经提供了这些性能数据,是否还需要重复log?


total_effective_samples = total_samples * training_args.num_train_epochs
effective_samples_per_second = total_effective_samples / train_result.metrics["train_runtime"]

logger.info(f"Effective_samples_per_second: {effective_samples_per_second} ")
logger.info(f"train_mem_gpu_peaked: {int(mem_gpu/ (2**20))} MB")
logger.info(f"avg_efficient_tokens_per_sec_per_card: {train_result.metrics['avg_efficient_tokens_per_sec_per_card']}")
logger.info(f"avg_tokens_per_sec_per_card: {train_result.metrics['avg_tokens_per_sec_per_card']}")

logger.info("Benchmark done.")
else:
trainer.save_model(merge_tensor_parallel=training_args.tensor_parallel_degree > 1)
Expand Down
11 changes: 11 additions & 0 deletions paddlemix/models/llava/language_model/llava_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,17 @@ def forward(
) = self.prepare_inputs_labels_for_multimodal(
input_ids, position_ids, attention_mask, past_key_values, labels, images, image_size
)

# 通过attention_mask计算有效token数量
if attention_mask is not None:
# 统计当前batch的有效token数(排除padding)
current_batch_tokens = attention_mask.sum().item() # shape: (batch_size, seq_len)
else:
# 如果没有padding,直接取inputs_embeds的batch_size*seq_length
current_batch_tokens = inputs_embeds.size(0) * inputs_embeds.size(1)

self.efficient_token_count = current_batch_tokens
self.input_shape = inputs_embeds.shape

return super().forward(
input_ids=input_ids,
Expand Down
10 changes: 5 additions & 5 deletions paddlemix/tools/supervised_finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,15 +191,15 @@ def get_paddle_memory_info():
)
memory_allocated, max_memory_allocated, memory_reserved, max_memory_reserved = get_paddle_memory_info()

logger.info(f'memory_allocated:{memory_allocated}GB, max_memory_allocated: {max_memory_allocated}GB, memory_reserved:{memory_reserved}GB, max_memory_reserved: {max_memory_reserved}GB \n')
logger.info(f'Memory_allocated:{memory_allocated}GB, max_memory_allocated: {max_memory_allocated}GB, memory_reserved:{memory_reserved}GB, max_memory_reserved: {max_memory_reserved}GB \n')

total_effective_samples = total_samples * training_args.num_train_epochs
effective_samples_per_second = total_effective_samples / train_result.metrics["train_runtime"]
mem_gpu = (
train_result.metrics["train_mem_gpu_peaked_delta"] + train_result.metrics["train_mem_gpu_alloc_delta"]
)

logger.info(f"Effective_samples_per_second: {effective_samples_per_second} ")
logger.info(f"train_mem_gpu_peaked: {int(mem_gpu/ (2**20))} MB")
logger.info(f"avg_efficient_tokens_per_sec_per_card: {train_result.metrics['avg_efficient_tokens_per_sec_per_card']}")
logger.info(f"avg_tokens_per_sec_per_card: {train_result.metrics['avg_tokens_per_sec_per_card']}")

logger.info("Benchmark done.")
else:
trainer.save_model(merge_tensor_parallel=training_args.tensor_parallel_degree > 1)
Expand Down
Loading