Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 9 additions & 20 deletions python/paddle/v2/fluid/tests/book/test_fit_a_line.py
Original file line number Diff line number Diff line change
@@ -1,33 +1,22 @@
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.core as core
import paddle.v2.fluid.optimizer as optimizer
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.io import save_persistables, load_persistables
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.io import save_persistables, load_persistables
from paddle.v2.fluid.optimizer import SGDOptimizer

import numpy as np

x = layers.data(
name='x',
shape=[13],
data_type='float32')
x = layers.data(name='x', shape=[13], data_type='float32')

y_predict = layers.fc(input=x,
size=1,
act=None)
y_predict = layers.fc(input=x, size=1, act=None)

y = layers.data(
name='y',
shape=[1],
data_type='float32')
y = layers.data(name='y', shape=[1], data_type='float32')

cost = layers.square_error_cost(
input=y_predict,
label=y)
cost = layers.square_error_cost(input=y_predict, label=y)
avg_cost = layers.mean(x=cost)

sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
sgd_optimizer = SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)

BATCH_SIZE = 20
Expand Down
100 changes: 20 additions & 80 deletions python/paddle/v2/fluid/tests/book/test_image_classification_train.py
Original file line number Diff line number Diff line change
@@ -1,21 +1,16 @@
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
import paddle.v2.fluid.optimizer as optimizer
from paddle.v2.fluid.executor import Executor
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.initializer import XavierInitializer
from paddle.v2.fluid.optimizer import AdamOptimizer


def resnet_cifar10(input, depth=32):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu'):
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
tmp = layers.conv2d(
input=input,
filter_size=filter_size,
Expand All @@ -24,9 +19,7 @@ def conv_bn_layer(input,
padding=padding,
act=None,
bias_attr=False)
return layers.batch_norm(
input=tmp,
act=act)
return layers.batch_norm(input=tmp, act=act)

def shortcut(input, ch_in, ch_out, stride, program, init_program):
if ch_in != ch_out:
Expand All @@ -35,28 +28,11 @@ def shortcut(input, ch_in, ch_out, stride, program, init_program):
else:
return input

def basicblock(input,
ch_in,
ch_out,
stride):
tmp = conv_bn_layer(
input,
ch_out,
3,
stride,
1)
tmp = conv_bn_layer(
tmp,
ch_out,
3,
1,
1,
act=None)
def basicblock(input, ch_in, ch_out, stride):
tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
short = shortcut(input, ch_in, ch_out, stride)
return layers.elementwise_add(
x=tmp,
y=short,
act='relu')
return layers.elementwise_add(x=tmp, y=short, act='relu')

def layer_warp(block_func, input, ch_in, ch_out, count, stride):
tmp = block_func(input, ch_in, ch_out, stride)
Expand All @@ -67,45 +43,17 @@ def layer_warp(block_func, input, ch_in, ch_out, count, stride):
assert (depth - 2) % 6 == 0
n = (depth - 2) / 6
conv1 = conv_bn_layer(
input=input,
ch_out=16,
filter_size=3,
stride=1,
padding=1)
res1 = layer_warp(
basicblock,
conv1,
16,
16,
n,
1)
res2 = layer_warp(
basicblock,
res1,
16,
32,
n,
2)
res3 = layer_warp(
basicblock,
res2,
32,
64,
n,
2)
input=input, ch_out=16, filter_size=3, stride=1, padding=1)
res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
pool = layers.pool2d(
input=res3,
pool_size=8,
pool_type='avg',
pool_stride=1)
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
return pool


def vgg16_bn_drop(input):
def conv_block(input,
num_filter,
groups,
dropouts):
def conv_block(input, num_filter, groups, dropouts):
return nets.img_conv_group(
input=input,
pool_size=2,
Expand All @@ -123,22 +71,14 @@ def conv_block(input,
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

drop = layers.dropout(
x=conv5,
dropout_prob=0.5)
drop = layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = layers.fc(input=drop,
size=512,
act=None,
param_attr={"initializer": XavierInitializer()})
reshape1 = layers.reshape(
x=fc1,
shape=list(fc1.shape + (1, 1)))
bn = layers.batch_norm(
input=reshape1,
act='relu')
drop2 = layers.dropout(
x=bn,
dropout_prob=0.5)
reshape1 = layers.reshape(x=fc1, shape=list(fc1.shape + (1, 1)))
bn = layers.batch_norm(input=reshape1, act='relu')
drop2 = layers.dropout(x=bn, dropout_prob=0.5)
fc2 = layers.fc(input=drop2,
size=512,
act=None,
Expand All @@ -165,8 +105,8 @@ def conv_block(input,
avg_cost = layers.mean(x=cost)
accuracy = layers.accuracy(input=predict, label=label)

# optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
optimizer = optimizer.AdamOptimizer(learning_rate=0.001)
# optimizer = SGDOptimizer(learning_rate=0.001)
optimizer = AdamOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)

BATCH_SIZE = 128
Expand Down
29 changes: 9 additions & 20 deletions python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,15 @@
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
import paddle.v2.fluid.core as core
import paddle.v2.fluid.optimizer as optimizer
import paddle.v2.fluid.evaluator as evaluator
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import AdamOptimizer

import numpy as np

images = layers.data(
name='pixel',
shape=[1, 28, 28],
data_type='float32')
label = layers.data(
name='label',
shape=[1],
data_type='int64')
images = layers.data(name='pixel', shape=[1, 28, 28], data_type='float32')
label = layers.data(name='label', shape=[1], data_type='int64')
conv_pool_1 = nets.simple_img_conv_pool(
input=images,
filter_size=5,
Expand All @@ -32,17 +25,13 @@
pool_stride=2,
act="relu")

predict = layers.fc(input=conv_pool_2,
size=10,
act="softmax")
predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(x=cost)
optimizer = optimizer.AdamOptimizer(learning_rate=0.01, beta1=0.9, beta2=0.999)
optimizer = AdamOptimizer(learning_rate=0.01, beta1=0.9, beta2=0.999)
opts = optimizer.minimize(avg_cost)

accuracy, acc_out = evaluator.accuracy(
input=predict,
label=label)
accuracy, acc_out = evaluator.accuracy(input=predict, label=label)

BATCH_SIZE = 50
PASS_NUM = 3
Expand Down
35 changes: 10 additions & 25 deletions python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,15 @@
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.core as core
import paddle.v2.fluid.optimizer as optimizer
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.regularizer import L2DecayRegularizer
from paddle.v2.fluid.initializer import UniformInitializer

import numpy as np
from paddle.v2.fluid.optimizer import MomentumOptimizer
from paddle.v2.fluid.regularizer import L2DecayRegularizer

BATCH_SIZE = 128
image = layers.data(
name='x',
shape=[784],
data_type='float32')
image = layers.data(name='x', shape=[784], data_type='float32')

param_attr = {
'name': None,
Expand All @@ -22,32 +18,21 @@
'regularization': L2DecayRegularizer(0.0005 * BATCH_SIZE)
}

hidden1 = layers.fc(input=image,
size=128,
act='relu',
param_attr=param_attr)
hidden2 = layers.fc(input=hidden1,
size=64,
act='relu',
param_attr=param_attr)
hidden1 = layers.fc(input=image, size=128, act='relu', param_attr=param_attr)
hidden2 = layers.fc(input=hidden1, size=64, act='relu', param_attr=param_attr)

predict = layers.fc(input=hidden2,
size=10,
act='softmax',
param_attr=param_attr)

label = layers.data(
name='y',
shape=[1],
data_type='int64')
label = layers.data(name='y', shape=[1], data_type='int64')

cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(x=cost)
accuracy = layers.accuracy(
input=predict,
label=label)
accuracy = layers.accuracy(input=predict, label=label)

optimizer = optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
opts = optimizer.minimize(avg_cost)

train_reader = paddle.batch(
Expand Down
Loading