Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/paddle/distributed/communication/broadcast.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ def broadcast_object_list(object_list, src, group=None):
obj_tensor, obj_size = convert_object_to_tensor(obj)
obj_tensors.append(obj_tensor)
obj_sizes.append(obj_size)
obj_size_tensor = paddle.concat(obj_sizes)
obj_size_tensor = paddle.stack(obj_sizes)
else:
obj_size_tensor = paddle.empty([obj_nums], dtype="int64")
broadcast(obj_size_tensor, src, group)
Expand Down
14 changes: 12 additions & 2 deletions python/paddle/distributed/fleet/utils/hybrid_parallel_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,16 @@ def _broadcast_data_help(data, shape, dtype, hcg):
)


def _broadcast_object_list_help(object_list, hcg):
model_parallel_group = hcg.get_model_parallel_group()
src_rank = hcg.get_model_parallel_group_src_rank()
mp_rank = hcg.get_model_parallel_rank()

paddle.distributed.broadcast_object_list(
object_list, src=src_rank, group=model_parallel_group
)


def broadcast_input_data(hcg, *inputs, **kwargs):
cur_device = paddle.get_device()
dev = cur_device.split(":")[0]
Expand All @@ -164,7 +174,7 @@ def broadcast_input_data(hcg, *inputs, **kwargs):
v_gpu._share_buffer_to(v)
_broadcast_data_help(v, v.shape, v.dtype, hcg)
else:
logger.warning("it doesn't support data type {}".format(type(v)))
_broadcast_object_list_help(v, hcg)

for k, v in kwargs.items():
if isinstance(v, (core.VarBase, core.eager.Tensor)):
Expand All @@ -176,7 +186,7 @@ def broadcast_input_data(hcg, *inputs, **kwargs):
_broadcast_data_help(v, v.shape, v.dtype, hcg)
kwargs[k] = v
else:
logger.warning("it doesn't support data type {}".format(type(v)))
kwargs[k] = _broadcast_object_list_help(v, hcg)
return inputs, kwargs


Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np
from hybrid_parallel_mp_model import (
SimpleDPNet,
SimpleMPNet,
TestDistMPTraning,
parallel_matmul,
set_random_seed,
)

import paddle
import paddle.distributed as dist
from paddle.distributed import fleet

vocab_size = 20
hidden_size = 10
inner_size = 8
output_size = 10
seq_length = 2
batch_size = 4


class SimpleMPMultimodalNet(SimpleMPNet):
def forward(self, x, **kwargs):
x = paddle.to_tensor(x)
x = self.embedding(x)
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
x = parallel_matmul(x, self.embedding.weight, False)
return x


class SimpleDPMultimodalNet(SimpleDPNet):
def forward(self, x, **kwargs):
x = paddle.to_tensor(x)
x = self.embedding(x)
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
x = paddle.matmul(x, self.embedding.weight, transpose_y=True)
return x


class TestMPBroadcastObj(TestDistMPTraning):
def build_model_optimizer(self):
hcg = fleet.get_hybrid_communicate_group()
word_size = hcg.get_model_parallel_world_size()
mp_id = hcg.get_model_parallel_rank()
dp_id = hcg.get_data_parallel_rank()
rank_id = dist.get_rank()
set_random_seed(1024, dp_id, rank_id)

np_fc1 = np.random.random_sample((hidden_size, inner_size))
np_fc2 = np.random.random_sample((inner_size, hidden_size))

model_a = SimpleMPMultimodalNet(
vocab_size,
hidden_size,
inner_size,
output_size,
np_fc1,
np_fc2,
mp_id,
)
optimizer_a = self.build_optimizer(model_a)
model_a = fleet.distributed_model(model_a)
optimizer_a = fleet.distributed_optimizer(optimizer_a)

model_b = SimpleDPMultimodalNet(
vocab_size, hidden_size, inner_size, output_size, np_fc1, np_fc2
)
optimizer_b = self.build_optimizer(model_b)

return model_a, optimizer_a, model_b, optimizer_b

def train_batch(self, batch, model, optimizer, is_mp):
img, text = batch
output = model(img, text=text)
loss = output.mean()
loss.backward() # do backward
optimizer.step() # update parameters
optimizer.clear_grad()
return loss

def test_mp_model(self):
(
model_a,
optimizer_a,
model_b,
optimizer_b,
) = self.build_model_optimizer()

for _ in range(5):
img = np.random.randint(
0,
vocab_size,
(
batch_size,
seq_length,
),
)
text = [
random.sample('zyxwvutsrqponmlkjihgfedcba', 5)
for i in range(batch_size)
]
batch = (img, text)

loss_a = self.train_batch(batch, model_a, optimizer_a, True)
loss_b = self.train_batch(batch, model_b, optimizer_b, False)

np.testing.assert_allclose(
loss_a.numpy(), loss_b.numpy(), rtol=1e-6
)


if __name__ == "__main__":
unittest.main()
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,9 @@ def test_hybrid_parallel_mp_bf16(self):
def test_hybrid_parallel_mp_clip_grad(self):
self.run_mnist_2gpu('hybrid_parallel_mp_clip_grad.py')

def test_hybrid_parallel_mp_broadcast_obj(self):
self.run_mnist_2gpu('hybrid_parallel_mp_broadcast_obj.py')


if __name__ == "__main__":
unittest.main()