Skip to content
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions python/paddle/distributed/sharding/group_sharded.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ def group_sharded_parallel(

# required: distributed
import paddle
from paddle.fluid.dygraph.nn import Linear
from paddle.nn import Linear
from paddle.distributed import fleet
from paddle.distributed.sharding import group_sharded_parallel

Expand Down Expand Up @@ -238,7 +238,7 @@ def save_group_sharded_model(model, output, optimizer=None):

# required: distributed
import paddle
from paddle.fluid.dygraph.nn import Linear
from paddle.nn import Linear
from paddle.distributed import fleet
from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.nn import Sequential
from paddle.fluid.dygraph import Linear
from paddle.nn import Linear
from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose
from paddle.fluid.log_helper import get_logger
from paddle.fluid.framework import _test_eager_guard
Expand Down Expand Up @@ -111,7 +111,7 @@ class ModelForConv2dT(nn.Layer):
def __init__(self, num_classes=10):
super().__init__()
self.features = nn.Conv2DTranspose(4, 6, (3, 3))
self.fc = Linear(input_dim=600, output_dim=num_classes)
self.fc = Linear(600, num_classes)

def forward(self, inputs):
x = self.features(inputs)
Expand Down Expand Up @@ -143,11 +143,9 @@ def __init__(self, num_classes=10, classifier_activation='softmax'):
)

self.fc = Sequential(
Linear(input_dim=400, output_dim=120),
Linear(input_dim=120, output_dim=84),
Linear(
input_dim=84, output_dim=num_classes, act=classifier_activation
),
Linear(400, 120),
Linear(120, 84),
Linear(84, num_classes),
)

def forward(self, inputs):
Expand Down
20 changes: 12 additions & 8 deletions python/paddle/fluid/dygraph/learning_rate_scheduler.py
Original file line number Diff line number Diff line change
Expand Up @@ -821,11 +821,12 @@ class ReduceLROnPlateau(LearningRateDecay):
.. code-block:: python

import paddle.fluid as fluid
import paddle
import numpy as np

with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x)

reduce_lr = fluid.dygraph.ReduceLROnPlateau(
Expand All @@ -842,7 +843,7 @@ class ReduceLROnPlateau(LearningRateDecay):
total_loss = 0
for bath_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
loss = paddle.mean(out)
total_loss += loss
adam.minimize(loss)

Expand Down Expand Up @@ -1090,17 +1091,18 @@ class StepDecay(_LearningRateEpochDecay):

import paddle.fluid as fluid
import numpy as np
import paddle
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

for epoch in range(9):
for batch_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
loss = paddle.mean(out)
adam.minimize(loss)
scheduler.epoch()

Expand Down Expand Up @@ -1170,17 +1172,18 @@ class MultiStepDecay(_LearningRateEpochDecay):

import paddle.fluid as fluid
import numpy as np
import paddle
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

for epoch in range(6):
for batch_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
loss = paddle.mean(out)
adam.minimize(loss)
scheduler.epoch()

Expand Down Expand Up @@ -1255,17 +1258,18 @@ class LambdaDecay(_LearningRateEpochDecay):

import paddle.fluid as fluid
import numpy as np
import paddle
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

for epoch in range(6):
for batch_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
loss = paddle.mean(out)
adam.minimize(loss)
scheduler.epoch()

Expand Down
Loading