Skip to content
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ option(COVERALLS_UPLOAD "Package code coverage data to coveralls" OFF)
option(ON_TRAVIS "Exclude special unit test on Travis CI" OFF)
option(WITH_C_API "Compile PaddlePaddle with C-API(Prediction)" OFF)
option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF)
option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF)

# CMAKE_BUILD_TYPE
if(NOT CMAKE_BUILD_TYPE)
Expand Down Expand Up @@ -126,6 +127,10 @@ if(WITH_GPU)
endif(NOT WITH_DSO)
endif(WITH_GPU)

if(USE_NNPACK)
list(APPEND EXTERNAL_LIBS ${NNPACK_LIB} ${PTHREADPOOL_LIB} "rt")
endif(USE_NNPACK)

add_subdirectory(proto)
add_subdirectory(paddle)
add_subdirectory(python)
Expand Down
8 changes: 8 additions & 0 deletions paddle/function/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,14 @@ if(WITH_GPU)
cuda_compile(cu_objs ${cu_files})
endif()

if(USE_NNPACK)
include(nnpack/nnpack.cmake)
list(APPEND cpp_files nnpack/NNPACKConvOp.cpp)
if(WITH_TESTING)
add_unittest(NNPACKConvOpTest nnpack/NNPACKConvOpTest.cpp)
endif()
endif()

add_library(paddle_function STATIC ${cpp_files} ${cu_objs})
add_dependencies(paddle_function ${external_project_dependencies})
add_dependencies(paddle_function gen_proto_cpp)
Expand Down
235 changes: 235 additions & 0 deletions paddle/function/nnpack/NNPACKConvOp.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "nnpack.h"
#include "paddle/function/ConvOp.h"

DEFINE_bool(nnpack_allocate_outside,
false,
"Allocate and free workspace memory outside the NNPACK interface.");
DEFINE_int32(nnpack_num_threads,
0,
"The number of nnpack threads"
"default: 0; 0 to disable threadpool.");

namespace paddle {

nnp_convolution_algorithm get_nnp_convolution_algorithm(
const std::string& algorithm) {
if (algorithm == "auto") {
return nnp_convolution_algorithm_auto;
} else if (algorithm == "ft8x8") {
return nnp_convolution_algorithm_ft8x8;
} else if (algorithm == "ft16x16") {
return nnp_convolution_algorithm_ft16x16;
} else if (algorithm == "wt8x8") {
return nnp_convolution_algorithm_wt8x8;
} else if (algorithm == "implicit-gemm") {
return nnp_convolution_algorithm_implicit_gemm;
} else if (algorithm == "direct") {
return nnp_convolution_algorithm_direct;
} else {
return nnp_convolution_algorithm_auto;
}
}

template <DeviceType Device>
class NNPACKConvFunction : public ConvFunctionBase {
public:
void init(const FuncConfig& config) override {
ConvFunctionBase::init(config);
CHECK_EQ(groups_, (size_t)1);
algorithm_ = get_nnp_convolution_algorithm(config.get<std::string>("algo"));
// algorithm_ = nnp_convolution_algorithm_auto;
transform_strategy_ = nnp_convolution_transform_strategy_compute;
nnp_status status = nnp_initialize();
CHECK_EQ(status, nnp_status_success);
workspaceBuffer_ = nullptr;
workspaceSize_ = 0;

threadpool_ = nullptr;
if (FLAGS_nnpack_num_threads) {
threadpool_ = pthreadpool_create(FLAGS_nnpack_num_threads);
VLOG(3) << "Number of threads "
<< pthreadpool_get_threads_count(threadpool_);
}
}

~NNPACKConvFunction() {
if (threadpool_) {
pthreadpool_destroy(threadpool_);
}
}

virtual void check(const BufferArgs& inputs,
const BufferArgs& outputs) override {
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();
checkShape(input, filter, output);
}

void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(numInputs_, inputs.size());
CHECK_EQ(numOutputs_, outputs.size());
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
check(inputs, outputs);
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();

size_t batchSize = input[0];
size_t inputChannels = input[1];
size_t inputHeight = input[2];
size_t inputWidth = input[3];
size_t filterHeight = getFilterHeight(filter);
size_t filterWidth = getFilterWidth(filter);
size_t outputChannels = output[1];
// size_t outputHeight = output[2];
// size_t outputWidth = output[3];

nnp_size inputSize = {.width = inputWidth, .height = inputHeight};
nnp_padding padding = {.top = (size_t)paddingH(),
.right = (size_t)paddingW(),
.bottom = (size_t)paddingH(),
.left = (size_t)paddingW()};
nnp_size kernelSize = {.width = filterWidth, .height = filterHeight};
nnp_size outputSubsampling = {.width = (size_t)strideW(),
.height = (size_t)strideH()};

float* inputData = inputs[0].data<float>();
float* filterData = inputs[1].data<float>();
float* outputData = outputs[0].data<float>();

void* bufferPtr = nullptr;
size_t* sizePtr = nullptr;
size_t needSize;
if (FLAGS_nnpack_allocate_outside) {
if (batchSize == 1) {
nnp_status status = nnp_convolution_inference(algorithm_,
transform_strategy_,
inputChannels,
outputChannels,
inputSize,
padding,
kernelSize,
outputSubsampling,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
&needSize,
nnp_activation_identity,
nullptr,
nullptr,
nullptr);
CHECK_EQ(status, nnp_status_success);
} else {
// only supports stride = 1
CHECK_EQ(strideH(), 1);
CHECK_EQ(strideW(), 1);
nnp_status status = nnp_convolution_output(algorithm_,
batchSize,
inputChannels,
outputChannels,
inputSize,
padding,
kernelSize,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
&needSize,
nnp_activation_identity,
nullptr,
nullptr,
nullptr);
CHECK_EQ(status, nnp_status_success);
}

LOG(INFO) << "workspace size is " << needSize;
if (needSize > workspaceSize_) {
workspaceSize_ = needSize;
if (workspaceBuffer_) {
free(workspaceBuffer_);
} else {
posix_memalign(&workspaceBuffer_, 64, needSize);
}
}

if (needSize) {
bufferPtr = workspaceBuffer_;
sizePtr = &needSize;
}
}

if (batchSize == 1) {
nnp_status status =
nnp_convolution_inference(algorithm_,
transform_strategy_,
inputChannels,
outputChannels,
inputSize,
padding,
kernelSize,
outputSubsampling,
inputData,
filterData,
nullptr, /* bias */
outputData,
bufferPtr,
sizePtr,
nnp_activation_identity,
nullptr,
threadpool_, /* threadpool */
nullptr);
CHECK_EQ(status, nnp_status_success);
} else {
// only supports stride = 1
CHECK_EQ(strideH(), 1);
CHECK_EQ(strideW(), 1);
nnp_status status = nnp_convolution_output(algorithm_,
batchSize,
inputChannels,
outputChannels,
inputSize,
padding,
kernelSize,
inputData,
filterData,
nullptr, /* bias */
outputData,
bufferPtr,
sizePtr,
nnp_activation_identity,
nullptr,
threadpool_, /* threadpool */
nullptr);
CHECK_EQ(status, nnp_status_success);
}
}

private:
nnp_convolution_algorithm algorithm_;
nnp_convolution_transform_strategy transform_strategy_;
void* workspaceBuffer_;
size_t workspaceSize_;
pthreadpool_t threadpool_;
};

REGISTER_TYPED_FUNC(NNPACKConv, CPU, NNPACKConvFunction);

} // namespace paddle
99 changes: 99 additions & 0 deletions paddle/function/nnpack/NNPACKConvOpTest.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "paddle/function/Function.h"
#include "paddle/function/FunctionTest.h"

DEFINE_string(algo,
"auto",
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
"implicit-gemm, or direct) for computing convolution of NNPACK.");

namespace paddle {

#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \
if (algo == "direct" && filterSize != 1) continue; \
if (algo == "direct" && batchSize != 1) continue; \
if (algo == "wt8x8" && filterSize != 3) continue; \
if (algo == "implicit-gemm" && batchSize != 1) continue; \
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;

class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64, 128}) {
if (inputChannels < outputChannels) break;
for (size_t stride : {1, 2}) {
// if batchSize > 1 NNPACKConv only supports stride = 1
if (batchSize > 1 && stride > 1) break;
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
IS_NNPACK_SUPPORT(algo, filterSize, stride);
LOG(INFO) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;

std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", algo));

TensorShape shape0{
batchSize, inputChannels, inputSize, inputSize};
TensorShape shape1{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape shape2{
batchSize, outputChannels, outputSize, outputSize};
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
test.run();
}
}
}
}
}
}
}
}
};

TEST(Convolution, NNPACK) {
// NNPACK only supports stride = 1
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo);
}

} // namespace paddle
16 changes: 16 additions & 0 deletions paddle/function/nnpack/nnpack.cmake
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Find the NNPACK library
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It would be great if we add a /cmake/external/nnpack.cmake to download the source code and build nnpack, like what cmake/external/{glog,gflags,gtest}.cmake do. In this way, cc_{library,binary,test} defined in cmake/generic.cmake can also make use of NNPACK.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But we don't have to complete it in this PR. I think an alternative is that we mark this in an issue and open subsequent PRs to fix it.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for your comments. I also think automatically download the source code and compile it is better.

# NNPACK_ROOT - where to find NNPACK include and library.
#

set(NNPACK_FOUND OFF)
set(NNPACK_ROOT $ENV{NNPACK_ROOT} CACHE PATH "Folder contains NNPACK")
find_path(NNPACK_INC_DIR nnpack.h PATHS ${NNPACK_ROOT}/include)
find_library(NNPACK_LIB NAMES nnpack PATHS ${NNPACK_ROOT}/lib)
find_library(PTHREADPOOL_LIB NAMES pthreadpool PATHS ${NNPACK_ROOT}/lib)

if(NNPACK_INC_DIR AND NNPACK_LIB AND PTHREADPOOL_LIB)
set(NNPACK_FOUND ON)
INCLUDE_DIRECTORIES(${NNPACK_INC_DIR})
else()
message(FATAL_ERROR "Cannot find NNPACK in (${NNPACK_ROOT})")
endif()