Skip to content

Error in stride shape #30

@Mxdy21

Description

@Mxdy21

Hi,

I noticed an error/warning because of the strides misshape in DDP when you train the architecture ddpmpp, a simple fix for this is to fix the operation in the attention modules contiguously. Here's the error :

params[166] in this process with sizes [256, 256, 1, 1] appears not to match strides of the same param in process 0.

To fix it you need to modify 5 lines of code.
For the AttentionOP modules you modify the backward and forward from :

class AttentionOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k):
        w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype)
        ctx.save_for_backward(q, k, w)
        return w

    @staticmethod
    def backward(ctx, dw):
        q, k, w = ctx.saved_tensors
        db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32)
        dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype) / np.sqrt(k.shape[1])
        dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype) / np.sqrt(k.shape[1])
        return dq, dk

to :

class AttentionOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k):
        w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype).contiguous()
        ctx.save_for_backward(q, k, w)
        return w

    @staticmethod
    def backward(ctx, dw):
        q, k, w = ctx.saved_tensors
        db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32).contiguous()
        dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype).contiguous() / np.sqrt(k.shape[1])
        dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype).contiguous() / np.sqrt(k.shape[1])
        return dq, dk

and in the UNetBlock module, from :

def forward(self, x, emb):
        orig = x
        x = self.conv0(silu(self.norm0(x)))

        params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
        if self.adaptive_scale:
            scale, shift = params.chunk(chunks=2, dim=1)
            x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))
        else:
            x = silu(self.norm1(x.add_(params)))

        x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
        x = x.add_(self.skip(orig) if self.skip is not None else orig)
        x = x * self.skip_scale

        if self.num_heads:
            q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2)
            w = AttentionOp.apply(q, k)
            a = torch.einsum('nqk,nck->ncq', w, v)
            x = self.proj(a.reshape(*x.shape)).add_(x)
            x = x * self.skip_scale
        return x

to :

    def forward(self, x, emb):
        orig = x
        x = self.conv0(silu(self.norm0(x)))

        params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
        if self.adaptive_scale:
            scale, shift = params.chunk(chunks=2, dim=1)
            x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))
        else:
            x = silu(self.norm1(x.add_(params)))

        x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
        x = x.add_(self.skip(orig) if self.skip is not None else orig)
        x = x * self.skip_scale

        if self.num_heads:
            q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2)
            w = AttentionOp.apply(q, k)
            a = torch.einsum('nqk,nck->ncq', w, v).contiguous()
            x = self.proj(a.reshape(*x.shape)).add_(x)
            x = x * self.skip_scale
        return x

I know that the author find this warning/error and decided to mute it, to solve it you just need those few lines of code

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions