A Model Context Protocol server that provides access to BigQuery. This server enables LLMs to inspect database schemas and execute queries.
The server implements one tool:
execute-query: Executes a SQL query using BigQuery dialectlist-tables: Lists all tables in the BigQuery databasedescribe-table: Describes the schema of a specific table
The server can be configured either with command line arguments or environment variables.
| Argument | Environment Variable | Required | Description |
|---|---|---|---|
--project |
BIGQUERY_PROJECT |
Yes | The GCP project ID. |
--location |
BIGQUERY_LOCATION |
Yes | The GCP location (e.g. europe-west9). |
--dataset |
BIGQUERY_DATASETS |
No | Only take specific BigQuery datasets into consideration. Several datasets can be specified by repeating the argument (e.g. --dataset my_dataset_1 --dataset my_dataset_2) or by joining them with a comma in the environment variable (e.g. BIGQUERY_DATASETS=my_dataset_1,my_dataset_2). If not provided, all datasets in the project will be considered. |
--key-file |
BIGQUERY_KEY_FILE |
No | Path to a service account key file for BigQuery. If not provided, the server will use the default credentials. |
To install BigQuery Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp-server-bigquery --client claudeOn MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
"mcpServers": {
"bigquery": {
"command": "uv",
"args": [
"--directory",
"{{PATH_TO_REPO}}",
"run",
"mcp-server-bigquery",
"--project",
"{{GCP_PROJECT_ID}}",
"--location",
"{{GCP_LOCATION}}"
]
}
}"mcpServers": {
"bigquery": {
"command": "uvx",
"args": [
"mcp-server-bigquery",
"--project",
"{{GCP_PROJECT_ID}}",
"--location",
"{{GCP_LOCATION}}"
]
}
}Replace {{PATH_TO_REPO}}, {{GCP_PROJECT_ID}}, and {{GCP_LOCATION}} with the appropriate values.
To prepare the package for distribution:
-
Increase the version number in
pyproject.toml -
Sync dependencies and update lockfile:
uv sync- Build package distributions:
uv buildThis will create source and wheel distributions in the dist/ directory.
- Publish to PyPI:
uv publishNote: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--tokenorUV_PUBLISH_TOKEN - Or username/password:
--username/UV_PUBLISH_USERNAMEand--password/UV_PUBLISH_PASSWORD
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm with this command:
npx @modelcontextprotocol/inspector uv --directory {{PATH_TO_REPO}} run mcp-server-bigqueryUpon launching, the Inspector will display a URL that you can access in your browser to begin debugging.