Skip to content

DongzhuoranZhou/ACM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Alleviating Over-Smoothing via Aggregation over Compact Manifolds

This is an authors' implementation of "Alleviating Over-Smoothing via Aggregation over Compact Manifolds" in Pytorch.

Requirements

python == 3.7

torch == 1.12.1

torch-geometric==2.2.0

torch_scatter==2.1.0

Train over GCN, GAT or SGC backbone networks

To run our code, we can simply use the following command:

python main.py --cuda_num=0 --type_model=GCN --type_layer=GCNConv_ACM  --dataset=Cora --miss_rate=0.

python main.py --cuda_num=0 --type_model=GAT --type_layer=GATConv_ACM --dataset=Cora --miss_rate=0.

python main.py --cuda_num=0 --type_model=simpleGCN --type_layer=simpleGCN_ACM --dataset=Cora --miss_rate=0.

Hyperparameter explanations:

--type_model: the type of GNN model. We include ['GCN', 'GAT', 'simpleGCN']

--type_layer: the type of our Method. We include ['GATConv_ACM', 'GCNConv_ACM', 'simpleGCN_ACM']

--dataset: we include ['Cora', 'Citeseer', 'Pubmed', 'CoauthorCS']

--miss_rate: the missing rate of input features. The value of 0. corresponds to the original dataset. The value of 1. means removing the features in validation and testing sets

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages