This is an authors' implementation of "Alleviating Over-Smoothing via Aggregation over Compact Manifolds" in Pytorch.
python == 3.7
torch == 1.12.1
torch-geometric==2.2.0
torch_scatter==2.1.0
To run our code, we can simply use the following command:
python main.py --cuda_num=0 --type_model=GCN --type_layer=GCNConv_ACM --dataset=Cora --miss_rate=0.
python main.py --cuda_num=0 --type_model=GAT --type_layer=GATConv_ACM --dataset=Cora --miss_rate=0.
python main.py --cuda_num=0 --type_model=simpleGCN --type_layer=simpleGCN_ACM --dataset=Cora --miss_rate=0.
Hyperparameter explanations:
--type_model: the type of GNN model. We include ['GCN', 'GAT', 'simpleGCN']
--type_layer: the type of our Method. We include ['GATConv_ACM', 'GCNConv_ACM', 'simpleGCN_ACM']
--dataset: we include ['Cora', 'Citeseer', 'Pubmed', 'CoauthorCS']
--miss_rate: the missing rate of input features. The value of 0. corresponds to the original dataset. The value of 1. means removing the features in validation and testing sets