@@ -48,7 +48,7 @@ def w(cosmo, a):
4848
4949 .. math::
5050
51- w(a) = w_0 + w (1 -a)
51+ w(a) = w_0 + w_a (1 - a)
5252 """
5353 return cosmo .w0 + (1.0 - a ) * cosmo .wa # Equation (6) in Linder (2003)
5454
@@ -75,22 +75,19 @@ def f_de(cosmo, a):
7575
7676 .. math::
7777
78- \rho_{de}(a) \propto a ^{f(a)}
78+ \rho_{de}(a) = \rho_{de}(a=1) e ^{f(a)}
7979
80- (see :cite:`2005:Percival`) where :math:`f(a)` is computed as
81- :math:`f(a) = \frac{-3}{\ln(a)} \int_0^{\ln(a)} [1 + w(a^\prime)]
82- d \ln(a^\prime)`. In the case of Linder's parametrisation for the
83- dark energy in Eq. :eq:`linderParam` :math:`f(a)` becomes:
80+ (see :cite:`2005:Percival` and note the difference in the exponent base
81+ in the parametrizations) where :math:`f(a)` is computed as
82+ :math:`f(a) = -3 \int_0^{\ln(a)} [1 + w(a')] d \ln(a')`.
83+ In the case of Linder's parametrisation for the dark energy
84+ in Eq. :eq:`linderParam` :math:`f(a)` becomes:
8485
8586 .. math::
8687
87- f(a) = -3(1 + w_0) + 3 w \left[ \frac{a - 1}{ \ln(a) } - 1 \right]
88+ f(a) = -3 (1 + w_0 + w_a) \ln(a) + 3 w_a (a - 1)
8889 """
89- # Just to make sure we are not diving by 0
90- epsilon = np .finfo (np .float32 ).eps
91- return - 3.0 * (1.0 + cosmo .w0 ) + 3.0 * cosmo .wa * (
92- (a - 1.0 ) / np .log (a - epsilon ) - 1.0
93- )
90+ return - 3.0 * (1.0 + cosmo .w0 + cosmo .wa ) * np .log (a ) + 3.0 * cosmo .wa * (a - 1.0 )
9491
9592
9693def Esqr (cosmo , a ):
@@ -117,15 +114,15 @@ def Esqr(cosmo, a):
117114
118115 .. math::
119116
120- E^2(a) = \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_{de} a ^{f(a)}
117+ E^2(a) = \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_{de} e ^{f(a)}
121118
122119 where :math:`f(a)` is the Dark Energy evolution parameter computed
123120 by :py:meth:`.f_de`.
124121 """
125122 return (
126123 cosmo .Omega_m * np .power (a , - 3 )
127124 + cosmo .Omega_k * np .power (a , - 2 )
128- + cosmo .Omega_de * np .power ( a , f_de (cosmo , a ))
125+ + cosmo .Omega_de * np .exp ( f_de (cosmo , a ))
129126 )
130127
131128
@@ -191,12 +188,12 @@ def Omega_de_a(cosmo, a):
191188
192189 .. math::
193190
194- \Omega_{de}(a) = \frac{\Omega_{de} a ^{f(a)}}{E^2(a)}
191+ \Omega_{de}(a) = \frac{\Omega_{de} e ^{f(a)}}{E^2(a)}
195192
196193 where :math:`f(a)` is the Dark Energy evolution parameter computed by
197194 :py:meth:`.f_de` (see :cite:`2005:Percival` Eq. (6)).
198195 """
199- return cosmo .Omega_de * np .power ( a , f_de (cosmo , a )) / Esqr (cosmo , a )
196+ return cosmo .Omega_de * np .exp ( f_de (cosmo , a )) / Esqr (cosmo , a )
200197
201198
202199def radial_comoving_distance (cosmo , a , log10_amin = - 3 , steps = 256 ):
0 commit comments