Is darknet much faster than pytorch implementation?
While fps is 42 on the paper of gaussian yolov3(uses darknet), I get 10fps with pytorch_GaussianYOLOv3 https://github.com/motokimura/PyTorch_Gaussian_YOLOv3
(forked from this repo) using Tesla M60, image size=1600x1200.
Testing on the 416x416 imgs, fps=21.
I save the resized image by addingcv2.imgwrite('myname',img)after img, info_img = preprocess(img, imgsize, jitter=0) # info = (h, w, nh, nw, dx, dy) in:
img = cv2.imread(image_path)
#Preprocess image
img_raw = img.copy()[:, :, ::-1].transpose((2, 0, 1))
img, info_img = preprocess(img, imgsize, jitter=0) # info = (h, w, nh, nw, dx, dy)
img = np.transpose(img / 255., (2, 0, 1))
img = torch.from_numpy(img).float().unsqueeze(0)
if gpu >= 0:
# Send model to GPU
img = Variable(img.type(torch.cuda.FloatTensor))
else:
img = Variable(img.type(torch.FloatTensor))