Skip to content

the model_names don't show when the ensemble_config is setted #427

@ghk829

Description

@ghk829

I run this code

import os
os.environ['is_test_suite']="True" # this is writen due to bug for multiprocessing and pickling I issued. #426 
from auto_ml import Predictor
from auto_ml.utils import get_boston_dataset
from auto_ml.utils_models import load_ml_model

# Load data
df_train, df_test = get_boston_dataset()

# Tell auto_ml which column is 'output'
# Also note columns that aren't purely numerical
# Examples include ['nlp', 'date', 'categorical', 'ignore']
#
column_descriptions = {
  'CHAS': 'output'

}

ml_predictor = Predictor(type_of_estimator='classification', column_descriptions=column_descriptions)
ml_predictor.train(df_train,ensemble_config=[{"model_name":"GradientBoostingClassifier"},{"model_name":"RandomForestClassifier"}],perform_feature_selection=True)

the result only show that

ml_predictor.model_names
['GradientBoostingClassifier']

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions