Skip to content

prediction results #5

@MaLab-xmh

Description

@MaLab-xmh

Expected to have 'InChiKey', 'SMILE', and 'target_aa_code'

nodes_df = pd.read_csv('some_csv_file_path')

Example entries

#nodes_df['InChiKey'] = ['HUMNYLRZRPPJDN-UHFFFAOYSA-N']
#nodes_df['SMILE'] = ['C1=CC=C(C=C1)C=O']
#nodes_df['target_aa_code'] = sars_targets['Sequence'].tolist()[0]
unseen_nodes_example_5fold_average = vecnet_object.get_fold_averaged_prediction_results(model_name = None,
version_number = None,
model_paths = [],
optimal_validation_model = None,
test_sets = [targets_test[1].dropna()],
get_drug_embed = True,
get_target_embed = True,
drug_filter_list = [],
target_filter_list = [],
return_dataframes = True )
Hello, I encountered a problem in the prediction step when running your model. After I read my data into nodes_df, I changed the test_sets = [targets_test[1].dropna()] in the above code to test_sets = [nodes_df.dropna()]. Why are the values ​​of the result variable unseen_nodes_example_5fold_average the same? Unseen_nodes_example_5fold_average stores the prediction results, right?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions