-
Notifications
You must be signed in to change notification settings - Fork 3
Description
Expected to have 'InChiKey', 'SMILE', and 'target_aa_code'
nodes_df = pd.read_csv('some_csv_file_path')
Example entries
#nodes_df['InChiKey'] = ['HUMNYLRZRPPJDN-UHFFFAOYSA-N']
#nodes_df['SMILE'] = ['C1=CC=C(C=C1)C=O']
#nodes_df['target_aa_code'] = sars_targets['Sequence'].tolist()[0]
unseen_nodes_example_5fold_average = vecnet_object.get_fold_averaged_prediction_results(model_name = None,
version_number = None,
model_paths = [],
optimal_validation_model = None,
test_sets = [targets_test[1].dropna()],
get_drug_embed = True,
get_target_embed = True,
drug_filter_list = [],
target_filter_list = [],
return_dataframes = True )
Hello, I encountered a problem in the prediction step when running your model. After I read my data into nodes_df, I changed the test_sets = [targets_test[1].dropna()] in the above code to test_sets = [nodes_df.dropna()]. Why are the values of the result variable unseen_nodes_example_5fold_average the same? Unseen_nodes_example_5fold_average stores the prediction results, right?