QAnT extracts no-reference IQMs (image quality metrics) representing noise/information measurements as well as DICOM metadata (Tags).
The initial goal of this project was to extract IQMs and dicom tags from structural MRI images in order to automatically determine a site/scanners effect of the images.
1. Create a conda environment (recommended)
ENVNAME="QAnT" conda create -n $ENVNAME python==3.7.7 -y conda activate $ENVNAME
pip install git+https://github.com/Alxaline/QAnT.git
git clone https://github.com/Alxaline/QAnT.git cd QAnT pip install -e .
https://comscan.readthedocs.io/en/latest/
This tool takes datasets in the file formats (.dcm, .nii, .nii.gz) as the input. To parse DICOM files, the script need to have dicom series in an independent folder, i.e. a unique folder for a volume with all .dcm slices inside.
You need to provide a parameter file for extraction. An example is available in QAnT/example_parameters/default_parameters.yaml
The tool is multi-process in order to speed up the extraction process.
You can directly use the cli:
qant-extractor [-h] -i INPUT_DIR [INPUT_DIR ...] -o OUTPUT_FILEPATH [-p PARAM] [-j N] [-v]
or in python mode:
usage: python -m QAnT.extractor [-h] -i INPUT_DIR [INPUT_DIR ...] -o OUTPUT_FILEPATH
[-p PARAM] [-j N] [-v]
QAnT: image Quality Assessment and dicom Tags extraction
optional arguments:
-h, --help show this help message and exit
Required:
-i INPUT_DIR [INPUT_DIR ...], --input_dir INPUT_DIR [INPUT_DIR ...]
Input directories path with DICOM files to be parsed.
Can be a list of directory
-o OUTPUT_FILEPATH, --output_filepath OUTPUT_FILEPATH
Output filepath for saving the content in csv files.
Need to have the .csv extensions
-p PARAM, --param PARAM
Parameter file containing the settings to be used in
extraction. If not provided use default setting.
--inclusion_keywords INCLUSION_KEYWORDS [INCLUSION_KEYWORDS ...]
Inclusion keywords to parse files. fnmatch style, i.e
['a*', 'b*']
--exclusion_keywords EXCLUSION_KEYWORDS [EXCLUSION_KEYWORDS ...]
Exclusion keywords to parse files. fnmatch style, i.e
['a*', 'b*']
Options:
-j N, --n_jobs N Specifies the number of threads to use for parallel
processing (default: all)
-v, --verbosity increase output verbosity (e.g., -vv is more than -v)
You can visualize results csv file in the application interface.
You can directly use the cli:
qant-interface
or in python mode:
usage: python -m QAnT.interface
If you find this repository useful for your research, please cite our work:
Carré, A., Battistella, E., Niyoteka, S. et al. AutoComBat: a generic method for harmonizing MRI-based radiomic features. Sci Rep 12, 12762 (2022). https://doi.org/10.1038/s41598-022-16609-1
BibTeX:
@article{carreAutoComBatGenericMethod2022,
title = {AutoComBat: a generic method for harmonizing MRI-based radiomic features},
volume = {12},
issn = {2045-2322},
url = {https://www.nature.com/articles/s41598-022-16609-1},
doi = {10.1038/s41598-022-16609-1},
language = {en},
number = {1},
urldate = {2022-07-27},
journal = {Scientific Reports},
author = {Carré, Alexandre and Battistella, Enzo and Niyoteka, Stephane and Sun, Roger and Deutsch, Eric and Robert, Charlotte},
year = {2022},
keywords = {Cancer imaging, Computational science, Tumour biomarkers},
pages = {12762},
}
Based on: MRQy
Sadri AR, Janowczyk A, Zhou R, Verma R, Beig N, Antunes J, Madabhushi A, Tiwari P, Viswanath SE. Technical Note: MRQy - An open-source tool for quality control of MR imaging data. Med Phys. 2020 Dec;47(12):6029-6038. doi: 10.1002/mp.14593.