Skip to content

Fix DPM++ SDE not deterministic across different batch sizes (#5210) #7730

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 30 additions & 8 deletions modules/sd_samplers_kdiffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,6 +269,16 @@ def get_sigmas(self, p, steps):

return sigmas

def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None

from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)

def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)

Expand All @@ -278,18 +288,24 @@ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning,
xi = x + noise * sigma_sched[0]

extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
parameters = inspect.signature(self.func).parameters

if 'sigma_min' in parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
if 'sigma_max' in parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
if 'n' in parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
if 'sigma_sched' in parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
if 'sigmas' in parameters:
extra_params_kwargs['sigmas'] = sigma_sched

if self.funcname == 'sample_dpmpp_sde':
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler

self.model_wrap_cfg.init_latent = x
self.last_latent = x
extra_args={
Expand All @@ -303,22 +319,28 @@ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning,

return samples

def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps = steps or p.steps

sigmas = self.get_sigmas(p, steps)

x = x * sigmas[0]

extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
parameters = inspect.signature(self.func).parameters

if 'sigma_min' in parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'n' in inspect.signature(self.func).parameters:
if 'n' in parameters:
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas

if self.funcname == 'sample_dpmpp_sde':
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler

self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
Expand Down
1 change: 1 addition & 0 deletions modules/shared.py
Original file line number Diff line number Diff line change
Expand Up @@ -414,6 +414,7 @@ def list_samplers():
options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
}))

Expand Down