@@ -81,7 +81,7 @@ def parse_args():
81
81
82
82
class RecordEpisodeStatistics (gym .Wrapper ):
83
83
def __init__ (self , env , deque_size = 100 ):
84
- super (RecordEpisodeStatistics , self ).__init__ (env )
84
+ super ().__init__ (env )
85
85
self .num_envs = getattr (env , "num_envs" , 1 )
86
86
self .episode_returns = None
87
87
self .episode_lengths = None
@@ -94,7 +94,7 @@ def __init__(self, env, deque_size=100):
94
94
print ("env has lives" )
95
95
96
96
def reset (self , ** kwargs ):
97
- observations = super (RecordEpisodeStatistics , self ).reset (** kwargs )
97
+ observations = super ().reset (** kwargs )
98
98
self .episode_returns = np .zeros (self .num_envs , dtype = np .float32 )
99
99
self .episode_lengths = np .zeros (self .num_envs , dtype = np .int32 )
100
100
self .lives = np .zeros (self .num_envs , dtype = np .int32 )
@@ -103,7 +103,7 @@ def reset(self, **kwargs):
103
103
return observations
104
104
105
105
def step (self , action ):
106
- observations , rewards , dones , infos = super (RecordEpisodeStatistics , self ).step (action )
106
+ observations , rewards , dones , infos = super ().step (action )
107
107
self .episode_returns += infos ["reward" ]
108
108
self .episode_lengths += 1
109
109
self .returned_episode_returns [:] = self .episode_returns
@@ -133,7 +133,7 @@ def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
133
133
134
134
class Agent (nn .Module ):
135
135
def __init__ (self , envs ):
136
- super (Agent , self ).__init__ ()
136
+ super ().__init__ ()
137
137
self .network = nn .Sequential (
138
138
layer_init (nn .Conv2d (4 , 32 , 8 , stride = 4 )),
139
139
nn .ReLU (),
0 commit comments