|
12 | 12 | # See the License for the specific language governing permissions and
|
13 | 13 | # limitations under the License.
|
14 | 14 |
|
| 15 | +import asyncio |
| 16 | +import inspect |
| 17 | +from functools import wraps |
15 | 18 | from typing import Any
|
16 | 19 |
|
| 20 | +import numpy as np |
| 21 | +import torch |
| 22 | +from tensordict import NonTensorData, NonTensorStack, TensorDict |
| 23 | +from transfer_queue import AsyncTransferQueueClient, BatchMeta |
| 24 | + |
17 | 25 | from verl.experimental.transfer_queue import ZMQServerInfo
|
| 26 | +from verl.protocol import DataProto |
| 27 | + |
| 28 | +# _TRANSFER_QUEUE_CONTROLLER_INFOS = None |
| 29 | +# _TRANSFER_QUEUE_STORAGE_INFOS = None |
| 30 | +_TRANSFER_QUEUE_CLIENT = None |
| 31 | + |
| 32 | + |
| 33 | +def create_transferqueue_client( |
| 34 | + client_id: str, |
| 35 | + controller_infos: dict[Any, ZMQServerInfo], |
| 36 | + storage_infos: dict[Any, ZMQServerInfo], |
| 37 | +) -> None: |
| 38 | + global _TRANSFER_QUEUE_CLIENT |
| 39 | + assert _TRANSFER_QUEUE_CLIENT is None, "TransferQueue client has already been created." |
| 40 | + _TRANSFER_QUEUE_CLIENT = AsyncTransferQueueClient(client_id, controller_infos, storage_infos) |
| 41 | + |
18 | 42 |
|
19 |
| -_TRANSFER_QUEUE_CONTROLLER_INFOS = None |
20 |
| -_TRANSFER_QUEUE_STORAGE_INFOS = None |
| 43 | +def get_transferqueue_client() -> AsyncTransferQueueClient: |
| 44 | + return _TRANSFER_QUEUE_CLIENT |
21 | 45 |
|
22 | 46 |
|
23 |
| -def set_transferqueue_server_info(controller_infos: dict[Any, ZMQServerInfo], storage_infos: dict[Any, ZMQServerInfo]): |
24 |
| - global _TRANSFER_QUEUE_CONTROLLER_INFOS, _TRANSFER_QUEUE_STORAGE_INFOS |
25 |
| - if _TRANSFER_QUEUE_CONTROLLER_INFOS is not None and _TRANSFER_QUEUE_STORAGE_INFOS is not None: |
26 |
| - return |
27 |
| - _TRANSFER_QUEUE_CONTROLLER_INFOS = controller_infos |
28 |
| - _TRANSFER_QUEUE_STORAGE_INFOS = storage_infos |
| 47 | +def _find_batchmeta(*args, **kwargs): |
| 48 | + for arg in args: |
| 49 | + if isinstance(arg, BatchMeta): |
| 50 | + return arg |
| 51 | + for v in kwargs.values(): |
| 52 | + if isinstance(v, BatchMeta): |
| 53 | + return v |
| 54 | + return None |
29 | 55 |
|
30 | 56 |
|
31 |
| -def get_transferqueue_server_info(): |
32 |
| - assert _TRANSFER_QUEUE_CONTROLLER_INFOS is not None and _TRANSFER_QUEUE_STORAGE_INFOS is not None, ( |
33 |
| - "TransferQueue server infos have not been set yet." |
| 57 | +def _batchmeta_to_dataproto(batchmeta: BatchMeta): |
| 58 | + tensordict = asyncio.run(_TRANSFER_QUEUE_CLIENT.async_get_data(batchmeta)) |
| 59 | + |
| 60 | + batch = {} |
| 61 | + non_tensor_batch = {} |
| 62 | + batch_size = None |
| 63 | + for k, v in tensordict.items(): |
| 64 | + if isinstance(v, torch.Tensor): |
| 65 | + batch[k] = v |
| 66 | + if batch_size is None: |
| 67 | + batch_size = v.shape[:1] |
| 68 | + elif isinstance(v, NonTensorStack): |
| 69 | + non_tensor_batch[k] = np.array([elem.data for elem in v], dtype=object) |
| 70 | + else: |
| 71 | + non_tensor_batch[k] = v |
| 72 | + return DataProto( |
| 73 | + batch=TensorDict(batch, batch_size=batch_size), |
| 74 | + non_tensor_batch=non_tensor_batch, |
| 75 | + meta_info=batchmeta.extra_info.copy(), |
34 | 76 | )
|
35 |
| - return _TRANSFER_QUEUE_CONTROLLER_INFOS, _TRANSFER_QUEUE_STORAGE_INFOS |
| 77 | + |
| 78 | + |
| 79 | +def _dataproto_to_tensordict(data: DataProto): |
| 80 | + result_dict = {} |
| 81 | + |
| 82 | + if data.batch is not None: |
| 83 | + result_dict.update(data.batch) |
| 84 | + |
| 85 | + batch_size = data.batch.batch_size if data.batch is not None else (len(list(data.non_tensor_batch.values())[0]),) |
| 86 | + if data.non_tensor_batch is not None: |
| 87 | + for k, v in data.non_tensor_batch.items(): |
| 88 | + result_dict[k] = NonTensorData(data=v, batch_size=batch_size) |
| 89 | + |
| 90 | + if data.meta_info == {} or data.meta_info is None: |
| 91 | + result_dict["meta_info"] = NonTensorData(data=[None] * batch_size[0], batch_size=batch_size) |
| 92 | + else: |
| 93 | + result_dict["meta_info"] = NonTensorData(data=[data.meta_info] * batch_size[0], batch_size=batch_size) |
| 94 | + return TensorDict(result_dict, batch_size=batch_size) |
| 95 | + |
| 96 | + |
| 97 | +def _update_batchmeta_with_output(output: DataProto, batchmeta: BatchMeta): |
| 98 | + tensordict = _dataproto_to_tensordict(output) |
| 99 | + batchmeta.add_fields(tensordict) |
| 100 | + asyncio.run(_TRANSFER_QUEUE_CLIENT.async_put(data=tensordict, metadata=batchmeta)) |
| 101 | + |
| 102 | + |
| 103 | +async def _async_update_batchmeta_with_output(output, batchmeta: BatchMeta): |
| 104 | + tensordict = _dataproto_to_tensordict(output) |
| 105 | + batchmeta.add_fields(tensordict) |
| 106 | + await _TRANSFER_QUEUE_CLIENT.async_put(data=tensordict, metadata=batchmeta) |
| 107 | + |
| 108 | + |
| 109 | +def batchmeta_dataproto_pipe(): |
| 110 | + def decorator(func): |
| 111 | + @wraps(func) |
| 112 | + def inner(*args, **kwargs): |
| 113 | + batchmeta = _find_batchmeta(*args, **kwargs) |
| 114 | + if batchmeta is None: |
| 115 | + return func(*args, **kwargs) |
| 116 | + else: |
| 117 | + args = [_batchmeta_to_dataproto(arg) if isinstance(arg, BatchMeta) else arg for arg in args] |
| 118 | + kwargs = {k: _batchmeta_to_dataproto(v) if isinstance(v, BatchMeta) else v for k, v in kwargs.items()} |
| 119 | + output = func(*args, **kwargs) |
| 120 | + _update_batchmeta_with_output(output, batchmeta) |
| 121 | + return batchmeta |
| 122 | + |
| 123 | + @wraps(func) |
| 124 | + async def async_inner(*args, **kwargs): |
| 125 | + batchmeta = _find_batchmeta(*args, **kwargs) |
| 126 | + if batchmeta is None: |
| 127 | + return await func(*args, **kwargs) |
| 128 | + else: |
| 129 | + args = [_batchmeta_to_dataproto(arg) if isinstance(arg, BatchMeta) else arg for arg in args] |
| 130 | + kwargs = {k: _batchmeta_to_dataproto(v) if isinstance(v, BatchMeta) else v for k, v in kwargs.items()} |
| 131 | + output = await func(*args, **kwargs) |
| 132 | + await _async_update_batchmeta_with_output(output, batchmeta) |
| 133 | + return batchmeta |
| 134 | + |
| 135 | + wrapper = async_inner if inspect.iscoroutinefunction(func) else inner |
| 136 | + return wrapper |
| 137 | + return decorator |
0 commit comments