Skip to content

Commit 20f1b7e

Browse files
authored
smart_optimizer() improved reporting (#8887)
Update smart_optimizer() weight_decay reporting
1 parent 030586a commit 20f1b7e

File tree

2 files changed

+4
-5
lines changed

2 files changed

+4
-5
lines changed

train.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -152,7 +152,6 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
152152
nbs = 64 # nominal batch size
153153
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
154154
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
155-
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
156155
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
157156

158157
# Scheduler

utils/torch_utils.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -276,7 +276,7 @@ def copy_attr(a, b, include=(), exclude=()):
276276
setattr(a, k, v)
277277

278278

279-
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, weight_decay=1e-5):
279+
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
280280
# YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
281281
g = [], [], [] # optimizer parameter groups
282282
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
@@ -299,10 +299,10 @@ def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, weight_decay=1e-
299299
else:
300300
raise NotImplementedError(f'Optimizer {name} not implemented.')
301301

302-
optimizer.add_param_group({'params': g[0], 'weight_decay': weight_decay}) # add g0 with weight_decay
302+
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
303303
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
304-
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
305-
f"{len(g[1])} weight (no decay), {len(g[0])} weight, {len(g[2])} bias")
304+
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
305+
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
306306
return optimizer
307307

308308

0 commit comments

Comments
 (0)