Skip to content

Commit 10198ac

Browse files
committed
Add an efficient reservoir sampling aggregator
This aggregator uses Li's "Algorithm L", a simple yet efficient sampling method, with modifications to support a monoidal setting. A JMH benchmark was added for both this and the old priority-queue algoritm. In a single-threaded benchmark on an Intel Core i9-10885H, this algorithm can outperform the old one by an order of magnitude or more, depending on the parameters. Because of this, the new algorithm was made the default for Aggregtor.reservoirSample(). Unit tests were added for both algorithms. These are probabilistic and are expected to fail on some 0.1% of times, per test case (p-value is set to 0.001). Optimized overloads of aggregation methods append/appendAll were added that operate on IndexedSeqs. These have efficient random access and allow us to skip over items without examining each one, so sublinear runtime can be achieved.
1 parent 464917d commit 10198ac

File tree

8 files changed

+655
-6
lines changed

8 files changed

+655
-6
lines changed
Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,46 @@
1+
package com.twitter.algebird.benchmark
2+
3+
import com.twitter.algebird.mutable.ReservoirSamplingToListAggregator
4+
import com.twitter.algebird.{Aggregator, Preparer}
5+
import org.openjdk.jmh.annotations.{Benchmark, Param, Scope, State}
6+
import org.openjdk.jmh.infra.Blackhole
7+
8+
import scala.util.Random
9+
10+
object ReservoirSamplingBenchmark {
11+
@State(Scope.Benchmark)
12+
class BenchmarkState {
13+
@Param(Array("100", "10000", "1000000"))
14+
var collectionSize: Int = 0
15+
16+
@Param(Array("0.001", "0.01", "0.1"))
17+
var sampleRate: Double = 0.0
18+
19+
def samples: Int = (sampleRate * collectionSize).ceil.toInt
20+
}
21+
22+
val rng = new Random()
23+
implicit val randomSupplier: () => Random = () => rng
24+
}
25+
26+
class ReservoirSamplingBenchmark {
27+
import ReservoirSamplingBenchmark._
28+
29+
private def prioQueueSampler[T](count: Int) =
30+
Preparer[T]
31+
.map(rng.nextDouble() -> _)
32+
.monoidAggregate(Aggregator.sortByTake(count)(_._1))
33+
.andThenPresent(_.map(_._2))
34+
35+
@Benchmark
36+
def timeAlgorithmL(state: BenchmarkState, bh: Blackhole): Unit =
37+
bh.consume(new ReservoirSamplingToListAggregator[Int](state.samples).apply(0 until state.collectionSize))
38+
39+
@Benchmark
40+
def timeAlgorithmLSeq(state: BenchmarkState, bh: Blackhole): Unit =
41+
bh.consume(new ReservoirSamplingToListAggregator[Int](state.samples).apply((0 until state.collectionSize).asInstanceOf[Seq[Int]]))
42+
43+
@Benchmark
44+
def timePriorityQeueue(state: BenchmarkState, bh: Blackhole): Unit =
45+
bh.consume(prioQueueSampler(state.samples).apply(0 until state.collectionSize))
46+
}

algebird-core/src/main/scala/com/twitter/algebird/Aggregator.scala

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,7 @@
11
package com.twitter.algebird
22

3+
import com.twitter.algebird.mutable.{Reservoir, ReservoirSamplingToListAggregator}
4+
35
import java.util.PriorityQueue
46
import scala.collection.compat._
57
import scala.collection.generic.CanBuildFrom
@@ -286,12 +288,9 @@ object Aggregator extends java.io.Serializable {
286288
def reservoirSample[T](
287289
count: Int,
288290
seed: Int = DefaultSeed
289-
): MonoidAggregator[T, PriorityQueue[(Double, T)], Seq[T]] = {
290-
val rng = new java.util.Random(seed)
291-
Preparer[T]
292-
.map(rng.nextDouble() -> _)
293-
.monoidAggregate(sortByTake(count)(_._1))
294-
.andThenPresent(_.map(_._2))
291+
): MonoidAggregator[T, Reservoir[T], Seq[T]] = {
292+
val rng = new scala.util.Random(seed)
293+
new ReservoirSamplingToListAggregator[T](count)(() => rng)
295294
}
296295

297296
/**
Lines changed: 259 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,259 @@
1+
package com.twitter.algebird.mutable
2+
3+
import com.twitter.algebird.{Monoid, MonoidAggregator}
4+
5+
import scala.collection.mutable
6+
import scala.util.Random
7+
8+
/**
9+
* A reservoir of the currently sampled items.
10+
*
11+
* @param capacity
12+
* the reservoir capacity
13+
* @tparam T
14+
* the element type
15+
*/
16+
sealed class Reservoir[T](val capacity: Int) {
17+
var reservoir: mutable.ArrayBuffer[T] = new mutable.ArrayBuffer
18+
19+
// When the reservoir is full, w is the threshold for accepting an element into the reservoir, and
20+
// the following invariant holds: The maximum score of the elements in the reservoir is w,
21+
// and the remaining elements are distributed as U[0, w].
22+
// Scores are not kept explicitly, only their distribution is tracked and sampled from.
23+
// (w = 1 when the reservoir is not full.)
24+
var w: Double = 1
25+
26+
require(capacity > 0, "reservoir size must be positive")
27+
private val kInv: Double = 1d / capacity
28+
29+
def size: Int = reservoir.size
30+
def isEmpty: Boolean = reservoir.isEmpty
31+
def isFull: Boolean = size == capacity
32+
33+
/**
34+
* Add an element to the reservoir. If the reservoir is full then the element will replace a random element
35+
* in the reservoir, and the threshold <pre>w</pre> is updated.
36+
*
37+
* When adding multiple elements, [[append]] should be used to take advantage of exponential jumps.
38+
*
39+
* @param x
40+
* the element to add
41+
* @param rng
42+
* the random source
43+
*/
44+
def accept(x: T, rng: Random): Unit = {
45+
if (isFull) {
46+
reservoir(rng.nextInt(capacity)) = x
47+
} else {
48+
reservoir.append(x)
49+
}
50+
if (isFull) {
51+
w *= Math.pow(rng.nextDouble, kInv)
52+
}
53+
}
54+
55+
// The number of items to skip before accepting the next item is geometrically distributed
56+
// with probability of success w / prior. The prior will be 1 when adding to a single reservoir,
57+
// but when merging reservoirs it will be the threshold of the reservoir being pulled from,
58+
// and in this case we require that w < prior.
59+
private def nextAcceptTime(rng: Random, prior: Double = 1.0): Int =
60+
(-rng.self.nextExponential / Math.log1p(-w / prior)).toInt
61+
62+
/**
63+
* Add multiple elements to the reservoir.
64+
* @param xs
65+
* the elements to add
66+
* @param rng
67+
* the random source
68+
* @param prior
69+
* the threshold of the elements being added, such that the added element's value is distributed as
70+
* <pre>U[0, prior]</pre>
71+
* @return
72+
* this reservoir
73+
*/
74+
def append(xs: TraversableOnce[T], rng: Random): Reservoir[T] = {
75+
var skip = if (isFull) nextAcceptTime(rng) else 0
76+
for (x <- xs) {
77+
if (!isFull) {
78+
// keep adding while reservoir is not full
79+
accept(x, rng)
80+
if (isFull) {
81+
skip = nextAcceptTime(rng)
82+
}
83+
} else if (skip > 0) {
84+
skip -= 1
85+
} else {
86+
accept(x, rng)
87+
skip = nextAcceptTime(rng)
88+
}
89+
}
90+
this
91+
}
92+
93+
/**
94+
* Add multiple elements to the reservoir. This overload is optimized for indexed sequences, where we can
95+
* skip over multiple indexes without accessing the elements.
96+
*
97+
* @param xs
98+
* the elements to add
99+
* @param rng
100+
* the random source
101+
* @param prior
102+
* the threshold of the elements being added, such that the added element's value is distributed as
103+
* <pre>U[0, prior]</pre>
104+
* @return
105+
* this reservoir
106+
*/
107+
def append(xs: IndexedSeq[T], rng: Random, prior: Double): Reservoir[T] = {
108+
var i = xs.size.min(capacity - size)
109+
for (j <- 0 until i) {
110+
accept(xs(j), rng)
111+
}
112+
assert(isFull)
113+
114+
val end = xs.size
115+
while (i >= 0 && i < end) {
116+
i += nextAcceptTime(rng, prior)
117+
// the addition can overflow, in which case i < 0
118+
if (i >= 0 && i < end) {
119+
// element enters the reservoir
120+
reservoir(rng.nextInt(capacity)) = xs(i)
121+
w *= Math.pow(rng.nextDouble, kInv)
122+
i += 1
123+
}
124+
}
125+
this
126+
}
127+
128+
override def toString: String = s"Reservoir($capacity, $w, ${reservoir.toList})"
129+
}
130+
131+
object Reservoir {
132+
implicit def monoid[T](implicit randomSupplier: () => Random): Monoid[Reservoir[T]] =
133+
new ReservoirMonoid()(randomSupplier)
134+
}
135+
136+
/**
137+
* This is the "Algorithm L" reservoir sampling algorithm [1], with modifications to act as a monoid by
138+
* merging reservoirs.
139+
*
140+
* [1] Kim-Hung Li, "Reservoir-Sampling Algorithms of Time Complexity O(n(1+log(N/n)))", 1994
141+
*
142+
* @tparam T
143+
* the item type
144+
*/
145+
class ReservoirMonoid[T](implicit val randomSupplier: () => Random) extends Monoid[Reservoir[T]] {
146+
147+
/**
148+
* Builds a reservoir with a single item.
149+
*
150+
* @param k
151+
* the reservoir capacity
152+
* @param x
153+
* the item to add
154+
* @return
155+
*/
156+
def build(k: Int, x: T): Reservoir[T] = {
157+
val r = new Reservoir[T](k)
158+
r.accept(x, randomSupplier())
159+
r
160+
}
161+
162+
override def zero: Reservoir[T] = new Reservoir(1)
163+
def zero(k: Int): Reservoir[T] = new Reservoir(k)
164+
override def isNonZero(r: Reservoir[T]): Boolean = !r.isEmpty
165+
166+
/**
167+
* Merge two reservoirs. NOTE: This mutates one or both of the reservoirs. They should not be used after
168+
* this operation, except as the return value for further aggregation.
169+
*/
170+
override def plus(left: Reservoir[T], right: Reservoir[T]): Reservoir[T] =
171+
if (left.isEmpty) right
172+
else if (left.size + right.size <= left.capacity) {
173+
// the sum of the sizes is less than the reservoir size, so we can just merge
174+
left.append(right.reservoir, randomSupplier())
175+
} else {
176+
val (s1, s2) = if (left.w < right.w) (left, right) else (right, left)
177+
val rng = randomSupplier()
178+
if (s2.isFull) {
179+
// The highest score in s2 is w, and the other scores are distributed as U[0, w].
180+
// Since s1.w < s2.w, we have to drop the single (sampled) element with the highest score
181+
// unconditionally. The other elements enter the reservoir with probability s1.w / s2.w.
182+
val i = rng.nextInt(s2.size)
183+
s2.reservoir(i) = s2.reservoir.head
184+
s1.append(s2.reservoir.drop(1), rng, s2.w)
185+
} else {
186+
s1.append(s2.reservoir, rng, 1.0)
187+
}
188+
}
189+
}
190+
191+
/**
192+
* An aggregator that uses reservoir sampling to sample k elements from a stream of items. Because the
193+
* reservoir is mutable, it is a good idea to copy the result to an immutable view before using it, as is done
194+
* by [[ReservoirSamplingToListAggregator]].
195+
*
196+
* The aggregator defines operations for [[IndexedSeq]]s that allow for more efficient aggregation, however
197+
* care must be taken with methods such as [[composePrepare()]] which return a regular [[MonoidAggregator]]
198+
* that loses this optimized behavior.
199+
*
200+
* @param k
201+
* the number of elements to sample
202+
* @param randomSupplier
203+
* the random generator
204+
* @tparam T
205+
* the item type
206+
* @tparam C
207+
* the result type
208+
*/
209+
abstract class ReservoirSamplingAggregator[T, +C](k: Int)(implicit val randomSupplier: () => Random)
210+
extends MonoidAggregator[T, Reservoir[T], C] {
211+
override val monoid: ReservoirMonoid[T] = new ReservoirMonoid
212+
override def prepare(x: T): Reservoir[T] = monoid.build(k, x)
213+
214+
override def apply(xs: TraversableOnce[T]): C = present(agg(xs))
215+
def apply(xs: IndexedSeq[T]): C = present(agg(xs))
216+
217+
override def applyOption(inputs: TraversableOnce[T]): Option[C] =
218+
if (inputs.isEmpty) None else Some(apply(inputs))
219+
220+
override def append(r: Reservoir[T], t: T): Reservoir[T] = r.append(Seq(t), randomSupplier())
221+
222+
override def appendAll(r: Reservoir[T], xs: TraversableOnce[T]): Reservoir[T] =
223+
r.append(xs, randomSupplier())
224+
def appendAll(r: Reservoir[T], xs: IndexedSeq[T]): Reservoir[T] =
225+
r.append(xs, randomSupplier(), 1.0)
226+
227+
override def appendAll(xs: TraversableOnce[T]): Reservoir[T] = agg(xs)
228+
def appendAll(xs: IndexedSeq[T]): Reservoir[T] = agg(xs)
229+
230+
private def agg(xs: TraversableOnce[T]): Reservoir[T] =
231+
appendAll(monoid.zero(k), xs)
232+
private def agg(xs: IndexedSeq[T]): Reservoir[T] =
233+
appendAll(monoid.zero(k), xs)
234+
}
235+
236+
class ReservoirSamplingToListAggregator[T](k: Int)(implicit randomSupplier: () => Random)
237+
extends ReservoirSamplingAggregator[T, List[T]](k)(randomSupplier) {
238+
override def present(r: Reservoir[T]): List[T] =
239+
randomSupplier().shuffle(r.reservoir).toList
240+
241+
override def andThenPresent[D](f: List[T] => D): MonoidAggregator[T, Reservoir[T], D] =
242+
new AndThenPresent(this, f)
243+
}
244+
245+
/**
246+
* Monoid that implements [[andThenPresent]] without ruining the optimized behavior of the aggregator.
247+
*/
248+
protected class AndThenPresent[-A, B, C, +D](val agg: MonoidAggregator[A, B, C], f: C => D)
249+
extends MonoidAggregator[A, B, D] {
250+
override val monoid: Monoid[B] = agg.monoid
251+
override def prepare(a: A): B = agg.prepare(a)
252+
override def present(b: B): D = f(agg.present(b))
253+
254+
override def apply(xs: TraversableOnce[A]): D = f(agg(xs))
255+
override def applyOption(xs: TraversableOnce[A]): Option[D] = agg.applyOption(xs).map(f)
256+
override def append(b: B, a: A): B = agg.append(b, a)
257+
override def appendAll(b: B, as: TraversableOnce[A]): B = agg.appendAll(b, as)
258+
override def appendAll(as: TraversableOnce[A]): B = agg.appendAll(as)
259+
}

0 commit comments

Comments
 (0)