Skip to content

Commit 35a4933

Browse files
committed
Merge branch 'main' into feat/eval
* main: (22 commits) Fix galore linears (modelscope#541) fix checkpoint in model_id_or_path (modelscope#542) Neftune support VL models (modelscope#539) update multi-modal docs (modelscope#538) support deepseek vl (modelscope#536) Support deepseek vl (modelscope#535) Update multi modal docs (modelscope#524) Support GaLore (modelscope#532) fix gradio (modelscope#533) Support cogvlm (modelscope#531) Fix web-ui more-params (modelscope#530) fix hyper parameters (modelscope#529) Support npu (modelscope#528) fix typo Fix test cases (modelscope#526) Support deployment (modelscope#523) update qwen1.5 best practice (modelscope#520) Add transfer README for cources (modelscope#518) revert code Revert "support torchrun_args for dpo cli and support web_ui model deployment (modelscope#496)" ... # Conflicts: # swift/llm/utils/argument.py
2 parents 16cc35d + 64ff9da commit 35a4933

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

57 files changed

+3745
-621
lines changed

README.md

Lines changed: 15 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -34,9 +34,9 @@
3434
- [Contact Us](#-contact-us)
3535

3636
## 📝 Introduction
37-
SWIFT (Scalable lightWeight Infrastructure for Fine-Tuning) is an extensible framwork designed to faciliate lightweight model fine-tuning and inference. It integrates implementations for various efficient fine-tuning methods, by embracing approaches that is parameter-efficient, memory-efficient, and time-efficient. SWIFT integrates seamlessly into ModelScope ecosystem and offers the capabilities to finetune various models, with a primary emphasis on LLMs and vision models. Additionally, SWIFT is fully compatible with [PEFT](https://github.com/huggingface/peft), enabling users to leverage the familiar Peft interface to finetune ModelScope models.
37+
SWIFT (Scalable lightWeight Infrastructure for Fine-Tuning) is an extensible framework designed to facilitate lightweight model fine-tuning and inference. It integrates implementations for various efficient fine-tuning methods, by embracing approaches that is parameter-efficient, memory-efficient, and time-efficient. SWIFT integrates seamlessly into ModelScope ecosystem and offers the capabilities to finetune various models, with a primary emphasis on LLMs and vision models. Additionally, SWIFT is fully compatible with [PEFT](https://github.com/huggingface/peft), enabling users to leverage the familiar Peft interface to finetune ModelScope models.
3838

39-
Currently supported approches (and counting):
39+
Currently supported approaches (and counting):
4040

4141
1. 🔥LoRA: [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/abs/2106.09685)
4242
2. 🔥LoRA+: [LoRA+: Efficient Low Rank Adaptation of Large Models](https://arxiv.org/pdf/2402.12354.pdf)
@@ -54,8 +54,8 @@ Currently supported approches (and counting):
5454

5555
Key features:
5656

57-
1. By integrating the ModelScope library, models can be readily obatined via a model-id.
58-
2. Tuners provided by SWIFT can be combined together to allow exploration of multiple tuners on a model for best result.
57+
1. By integrating the ModelScope library, models can be readily obtained via a model-id.
58+
2. Tuners provided by SWIFT can be combined to allow exploration of multiple tuners on a model for best result.
5959
3. Support calling `activate_adapter` or `deactivate_adapter` or `set_active_adapters` to activate/deactivate tuners. User can inference with one model and multiple tuners in different threads independently.
6060
4. Support training and inference with scripts/CLI,meanwhile support inference with Web-UI.
6161
5. Support model deployment(vllm/chatglm.cpp/xinference),Check [Official documentation](./docs/source/GetStarted/部署指南.md) for details.
@@ -64,6 +64,9 @@ Users can check the [documentation of SWIFT](docs/source/GetStarted/快速使用
6464

6565

6666
## 🎉 News
67+
- 🔥2024.03.12: Supports inference and fine-tuning for the **deepseek-vl** series. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source/Multi-Modal/deepseek-vl最佳实践.md).
68+
- 🔥2024.03.11: Support [GaLore](https://arxiv.org/abs/2403.03507), which can efficiently reduce the memory usage(almost half of the original memory) when training the full model.
69+
- 🔥2024.03.10: For the end-to-end best practice of fine-tuning to deployment of Qwen1.5-7B-Chat and Qwen1.5-72B-Chat, you can refer to the [Qwen1.5 Full Workflow Best Practice](https://github.com/modelscope/swift/blob/main/docs/source/LLM/Qwen1.5%E5%85%A8%E6%B5%81%E7%A8%8B%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.md).
6770
- 🔥2024.03.09: Support training and inference of MAMBA series, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/mamba-1.4b/lora/sft.sh) to begin.
6871
- 2024.03.09: Support training and inference of AQLM quantized models, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/sft.sh) to begin.
6972
- 2024.03.06: Support training and inference of AWQ quantized models, use [this Qwen1.5-AWQ script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen1half_7b_chat_awq/lora/sft.sh) to begin, support training and inference of [yi-9b](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/yi_9b/lora_zero3).
@@ -106,7 +109,7 @@ Users can check the [documentation of SWIFT](docs/source/GetStarted/快速使用
106109
- 2023.12.08: Support [sus-34b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/sus_34b_chat), support yi-6b-200k, yi-34b-200k.
107110
- 2023.12.07: Support [Multi-Node DDP training](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E5%BE%AE%E8%B0%83%E6%96%87%E6%A1%A3.md#%E4%BD%BF%E7%94%A8cli).
108111
- 2023.12.04: Supported models: zephyr-7b-beta-chat, openbuddy-zephyr-7b-chat. Supported datasets: hc3-zh, hc3-en.
109-
- 🔥 2023.12.02: [Best Practices for Self-cognition Fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/LLM/自我认知微调最佳实践.md), **10 minutes for self-cognition fine-tuning for LLM**, creating a LLM that is specific to oneself.
112+
- 🔥 2023.12.02: [Best Practice for Self-cognition Fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/LLM/自我认知微调最佳实践.md), **10 minutes for self-cognition fine-tuning for LLM**, creating a LLM that is specific to oneself.
110113
- 🔥 2023.11.30: Support for training and inference of the **qwen-1_8b**, **qwen-72b**, and **qwen-audio** model series. The corresponding shell scripts can be viewed at [qwen_1_8b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_1_8b_chat), [qwen_72b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_72b_chat), [qwen_audio_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/qwen_audio_chat).
111114
- 🔥 2023.11.29: Support the training and inference for **AnimateDiff**
112115
- 🔥 2023.11.24: Support for **yi-34b-chat**, **codefuse-codellama-34b-chat**: The corresponding shell script can be found in [yi_34b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yi_34b_chat), [codefuse_codellama_34b_chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/codefuse_codellama_34b_chat).
@@ -136,6 +139,9 @@ Users can check the [documentation of SWIFT](docs/source/GetStarted/快速使用
136139

137140

138141
## ✨ LLM Training and Inference
142+
If you want to learn more about **best practices** for LLM or multimodal LLM, or if you are interested in **tutorials** on inference, fine-tuning, quantization, and deployment of LLM, you can refer to the [LLM series documentation](https://github.com/modelscope/swift/blob/main/docs/source/LLM/index.md).
143+
144+
139145
### WEB UI training and inference
140146

141147
After installation, you can use web-ui training/inference like:
@@ -155,20 +161,6 @@ Here is a simple introduction of web-ui:
155161

156162
[![Watch the video](docs/source/cources/resources/20240119160942.jpg)](https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/SWIFT%E8%A7%86%E9%A2%91_%E8%B0%83%E6%95%B4%E5%B0%81%E9%9D%A2.mp4)
157163

158-
### Simple Usage
159-
160-
- **Self-cognition fine-tuning** for large models in **10 minutes**, creating a personalized large model, please refer to [Best Practices for Self-cognition Fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/LLM/自我认知微调最佳实践.md).
161-
- Quickly perform **inference** on LLM and build a **Web-UI**, see the [LLM Inference Documentation](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM推理文档.md).
162-
- Rapidly **fine-tune** and perform inference on LLM, and build a Web-UI, see the [LLM Fine-tuning Documentation](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM微调文档.md).
163-
- Using **interface** to fine-tuning and perform inference, see the [WEB-UI Documentation](https://github.com/modelscope/swift/blob/main/docs/source/GetStarted/%E7%95%8C%E9%9D%A2%E8%AE%AD%E7%BB%83%E6%8E%A8%E7%90%86.md).
164-
- **DPO training** supported, see the [DPO Documentation](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E4%BA%BA%E7%B1%BB%E5%AF%B9%E9%BD%90%E8%AE%AD%E7%BB%83%E6%96%87%E6%A1%A3.md).
165-
- Export fine-tuned models, including: merge-lora, AWQ/GPTQ quantization, and push to ModelScope Hub. For more details, please refer to the [LLM Quantization Documentation](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E9%87%8F%E5%8C%96%E6%A8%A1%E5%9E%8B.md).
166-
- Utilize VLLM for **inference acceleration** and **deployment(OpenAI API)**. Please refer to [VLLM Inference Acceleration and Deployment](https://github.com/modelscope/swift/blob/main/docs/source/LLM/VLLM推理加速与部署.md) for more information.
167-
- View the models and datasets supported by Swift. You can check [supported models and datasets](https://github.com/modelscope/swift/blob/main/docs/source/LLM/支持的模型和数据集.md).
168-
- Expand and customize models, datasets, and dialogue templates in Swift, see [Customization and Expansion](https://github.com/modelscope/swift/blob/main/docs/source/LLM/自定义与拓展.md).
169-
- Check command-line parameters for fine-tuning and inference, see [Command-Line parameters](https://github.com/modelscope/swift/blob/main/docs/source/LLM/命令行参数.md).
170-
- View the training time and training GPU memory comparison under different parameters, you can check [Benchmark](https://github.com/modelscope/swift/blob/main/docs/source/LLM/Benchmark.md).
171-
172164

173165
### Quick Start
174166
You can test if the environment is installed correctly by running the following code.
@@ -230,9 +222,10 @@ You can refer to the following scripts to customize your own training script.
230222
- Multi-Modal:
231223
- [qwen-vl](https://github.com/QwenLM/Qwen-VL) series: qwen-vl, qwen-vl-chat, qwen-vl-chat-int4.
232224
- [qwen-audio](https://github.com/QwenLM/Qwen-Audio) series: qwen-audio, qwen-audio-chat.
233-
- [yi-vl](https://github.com/01-ai/Yi) series: yi-vl-6b-chat, yi-vl-34b-chat.
234-
- [cogagent](https://github.com/THUDM/CogVLM) series: cogagent-18b-chat, cogagent-18b-instruct.
225+
- [deepseek-vl](https://github.com/deepseek-ai/DeepSeek-VL) series: deepseek-vl-1_3b-chat, deepseek-vl-7b-chat.
235226
- [internlm-xcomposer2](https://github.com/InternLM/InternLM-XComposer) series: internlm-xcomposer2-7b-chat.
227+
- [yi-vl](https://github.com/01-ai/Yi) series: yi-vl-6b-chat, yi-vl-34b-chat.
228+
- [cogvlm](https://github.com/THUDM/CogVLM) series: cogvlm-17b-instruct, cogagent-18b-chat, cogagent-18b-instruct.
236229
- General:
237230
- [qwen](https://github.com/QwenLM/Qwen) series:
238231
- qwen-1_8b, qwen-1_8b-chat, qwen-1_8b-chat-int4, qwen-1_8b-chat-int8.
@@ -297,7 +290,7 @@ You can refer to the following scripts to customize your own training script.
297290
- Custom Dataset
298291
- Supported Templates:
299292
- Text Generation: default-generation, default-generation-bos, chatglm-generation, qwen-audio-generation.
300-
- Chat: default, qwen, qwen-audio, baichuan, chatglm2, chatglm3, llama, openbuddy, internlm, internlm2, internlm-xcomposer2, yi, yi-vl, yuan, xverse, ziya, skywork, bluelm, zephyr, sus, deepseek, deepseek-coder, codefuse-codellama, codefuse, cogagent-chat, cogagent-instruct, orion, openbmb, gemma, chatml.
293+
- Chat: default, qwen, qwen-audio, baichuan, chatglm2, chatglm3, llama, openbuddy, internlm, internlm2, internlm-xcomposer2, yi, yi-vl, yuan, xverse, ziya, skywork, bluelm, zephyr, sus, deepseek, deepseek-coder, codefuse-codellama, codefuse, cogvlm-instruct, cogagent-chat, cogagent-instruct, orion, openbmb, gemma, chatml.
301294

302295

303296
## 🔥SCEdit

README_CN.md

Lines changed: 10 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -62,6 +62,9 @@ SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是一个可扩展
6262
用户可以查看 [SWIFT官方文档](docs/source/GetStarted/快速使用.md) 来了解详细信息。
6363

6464
## 🎉 新闻
65+
- 🔥2024.03.12: 支持**deepseek-vl**系列推理和微调, 最佳实践可以查看[这里](https://github.com/modelscope/swift/tree/main/docs/source/Multi-Modal/deepseek-vl最佳实践.md).
66+
- 🔥2024.03.11: 支持[GaLore](https://arxiv.org/abs/2403.03507), 用于在全参数训练中有效减小显存占用至原来的1/2.
67+
- 🔥2024.03.10: Qwen1.5-7B-Chat与Qwen1.5-72B-Chat从微调到部署[全流程最佳实践](https://github.com/modelscope/swift/blob/main/docs/source/LLM/Qwen1.5%E5%85%A8%E6%B5%81%E7%A8%8B%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.md).
6568
- 🔥2024.03.09: 支持MAMBA模型的训练和推理, 使用[这个脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/mamba-1.4b/lora/sft.sh)来开始训练!.
6669
- 2024.03.09: 支持AQLM量化模型的训练和推理, 使用[这个脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_7b_aqlm_2bit_1x16/lora/sft.sh)开始训练!
6770
- 2024.03.06: 支持AWQ量化模型的训练和推理, 使用[这个Qwen1.5-AWQ模型脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen1half_7b_chat_awq/lora/sft.sh)开始训练, 并支持[yi-9b](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/yi_9b/lora_zero3)的训练和推理.
@@ -134,6 +137,9 @@ SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是一个可扩展
134137

135138

136139
## ✨ 大模型训练推理
140+
如果想要了解更多大模型或者多模态大模型的**最佳实践**, 或者对大模型进行推理, 微调, 量化, 部署的**教程**, 可以查看[LLM系列文档](https://github.com/modelscope/swift/blob/main/docs/source/LLM/index.md).
141+
142+
137143
### WEB UI训练推理
138144

139145
安装SWIFT之后,用如下方式启动界面训练推理:
@@ -155,20 +161,6 @@ swift web-ui
155161

156162
[![Watch the video](docs/source/cources/resources/20240119160942.jpg)](https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/SWIFT%E8%A7%86%E9%A2%91_%E8%B0%83%E6%95%B4%E5%B0%81%E9%9D%A2.mp4)
157163

158-
### 简单使用
159-
160-
- **10分钟**对大模型进行**自我认知微调**, 创建专属于自己的大模型, 可以查看[自我认知微调最佳实践](https://github.com/modelscope/swift/blob/main/docs/source/LLM/自我认知微调最佳实践.md).
161-
- 快速对LLM进行**推理**, 搭建**Web-UI**, 可以查看[LLM推理文档](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM推理文档.md).
162-
- 快速对LLM进行**微调**, 推理并搭建Web-UI, 可以查看[LLM微调文档](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM微调文档.md).
163-
- 使用**界面**方式进行微调和推理, 可以查看[WEB-UI文档](https://github.com/modelscope/swift/blob/main/docs/source/GetStarted/%E7%95%8C%E9%9D%A2%E8%AE%AD%E7%BB%83%E6%8E%A8%E7%90%86.md).
164-
- 支持**DPO训练**, 可以查看[DPO文档](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E4%BA%BA%E7%B1%BB%E5%AF%B9%E9%BD%90%E8%AE%AD%E7%BB%83%E6%96%87%E6%A1%A3.md).
165-
- 对微调的模型进行导出, 包括: merge-lora, AWQ/GPTQ量化, 推送ModelScope Hub, 可以查看[LLM量化文档](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E9%87%8F%E5%8C%96%E6%A8%A1%E5%9E%8B.md).
166-
- 使用VLLM进行**推理加速****部署(OpenAI API)**. 可以查看[VLLM推理加速与部署](https://github.com/modelscope/swift/blob/main/docs/source/LLM/VLLM推理加速与部署.md).
167-
- 查看swift支持的模型和数据集. 可以查看[支持的模型和数据集](https://github.com/modelscope/swift/blob/main/docs/source/LLM/支持的模型和数据集.md).
168-
- 对swift中的模型, 数据集, 对话模板进行**拓展**, 可以查看[自定义与拓展](https://github.com/modelscope/swift/blob/main/docs/source/LLM/自定义与拓展.md).
169-
- 查询微调和推理的命令行参数, 可以查看[命令行参数](https://github.com/modelscope/swift/blob/main/docs/source/LLM/命令行参数.md).
170-
- 查看不同参数下的训练时间和训练显存对比, 可以查看[Benchmark](https://github.com/modelscope/swift/blob/main/docs/source/LLM/Benchmark.md).
171-
172164

173165
### 快速开始
174166
你可以通过运行以下代码来测试环境是否安装正确.
@@ -230,9 +222,10 @@ app_ui_main(infer_args)
230222
- 多模态:
231223
- [qwen-vl](https://github.com/QwenLM/Qwen-VL) 系列: qwen-vl, qwen-vl-chat, qwen-vl-chat-int4.
232224
- [qwen-audio](https://github.com/QwenLM/Qwen-Audio) 系列: qwen-audio, qwen-audio-chat.
233-
- [yi-vl](https://github.com/01-ai/Yi) 系列: yi-vl-6b-chat, yi-vl-34b-chat.
234-
- [cogagent](https://github.com/THUDM/CogVLM) 系列: cogagent-18b-chat, cogagent-18b-instruct.
225+
- [deepseek-vl](https://github.com/deepseek-ai/DeepSeek-VL) 系列: deepseek-vl-1_3b-chat, deepseek-vl-7b-chat.
235226
- [internlm-xcomposer2](https://github.com/InternLM/InternLM-XComposer) 系列: internlm-xcomposer2-7b-chat.
227+
- [yi-vl](https://github.com/01-ai/Yi) 系列: yi-vl-6b-chat, yi-vl-34b-chat.
228+
- [cogvlm](https://github.com/THUDM/CogVLM) 系列: cogvlm-17b-instruct, cogagent-18b-chat, cogagent-18b-instruct.
236229
- 通用:
237230
- [qwen](https://github.com/QwenLM/Qwen) 系列:
238231
- qwen-1_8b, qwen-1_8b-chat, qwen-1_8b-chat-int4, qwen-1_8b-chat-int8.
@@ -297,7 +290,7 @@ app_ui_main(infer_args)
297290
- 自定义数据集
298291
- 支持的对话模板:
299292
- 文本生成: default-generation, default-generation-bos, chatglm-generation, qwen-audio-generation.
300-
- 对话: default, qwen, qwen-audio, baichuan, chatglm2, chatglm3, llama, openbuddy, internlm, internlm2, internlm-xcomposer2, yi, yi-vl, yuan, xverse, ziya, skywork, bluelm, zephyr, sus, deepseek, deepseek-coder, codefuse-codellama, codefuse, cogagent-chat, cogagent-instruct, orion, openbmb, gemma, chatml.
293+
- 对话: default, qwen, qwen-audio, baichuan, chatglm2, chatglm3, llama, openbuddy, internlm, internlm2, internlm-xcomposer2, yi, yi-vl, yuan, xverse, ziya, skywork, bluelm, zephyr, sus, deepseek, deepseek-coder, codefuse-codellama, codefuse, cogvlm-instruct, cogagent-chat, cogagent-instruct, orion, openbmb, gemma, chatml.
301294

302295

303296
## 🔥SCEdit

docs/source/GetStarted/快速使用.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ pip install ms-swift -U
3030
SWIFT库提供了**LLM&AIGC模型的训练推理脚手架**,支持LLaMA、QWen、ChatGLM、Stable Diffusion等多种模型的直接训练和推理,并且集成了SWIFT库提供的tuners,
3131
开发者可以直接使用。它们的位置在:https://github.com/modelscope/swift/tree/main/examples/pytorch/llm
3232

33-
- LLM训练和推理可以查看: [LLM微调文档](https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM微调文档.md)
33+
- LLM训练和推理可以查看: [LLM系列文档](https://github.com/modelscope/swift/blob/main/docs/source/LLM/index.md)
3434
- AIGC训练和推理可以查看: [文生图微调文档](https://github.com/modelscope/swift/blob/main/docs/source/AIGC/AnimateDiff微调推理文档.md)
3535

3636
# 使用WEB-UI训练和推理

0 commit comments

Comments
 (0)