Skip to content

Commit 6b00b52

Browse files
committed
Add overview and update requirements.txt
1 parent 997dd22 commit 6b00b52

File tree

4 files changed

+23
-14
lines changed

4 files changed

+23
-14
lines changed

README.md

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,10 +5,20 @@
55
<h1 align="center">GuidedQuant</h1>
66
</p>
77
<p align="center"><b>Smarter LLM Post-Training Quantization using End Loss Guidance</b>, boosting the performance of <br> state-of-the-art <i>weight-only scalar</i>, <i>weight-only vector</i>, and <i>weight-and-activation</i> quantization methods.</p>
8+
<p align="center">
9+
<a href="https://arxiv.org/abs/2505.07004"><img src="https://img.shields.io/badge/arXiv-2505.07004-b31b1b.svg"></a>
10+
<a href="./LICENSE"><img src="https://img.shields.io/badge/License-MIT-yellow"></a>
11+
</p>
812

913
# News
1014
- **May, 2025**: GuidedQuant is accepted to **ICML 2025**.
1115

16+
# Overview
17+
![Light Mode](assets/objective-light.png#gh-light-mode-only)
18+
![Dark Mode](assets/objective-dark.png#gh-dark-mode-only)
19+
20+
> *<b>GuidedQuant</b> enhances LLM quantization by integrating gradient information from the end loss into the quantization objective, boosting the performance of SOTA weight-only scalar, weight-only vector, and weight-and-activation quantization. Additionally, we introduce <b>LNQ</b>, a non-uniform scalar quantization algorithm which is guaranteed to monotonically decrease the quantization objective value.*
21+
1222
# Installation & Usage
1323

1424
To be released soon.

assets/objective-dark.png

35.7 KB
Loading

assets/objective-light.png

35 KB
Loading

requirements.txt

Lines changed: 13 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,15 @@
1-
numpy~=1.26.4
2-
torch~=2.2.2
3-
transformers~=4.39.3
4-
tqdm~=4.66.2
5-
numba~=0.60.0
6-
datasets~=2.17.0
7-
accelerate~=0.29.2
8-
setuptools~=68.2.0
9-
pandas~=2.2.0
10-
safetensors~=0.4.2
11-
threadpoolctl~=3.2.0
12-
pyyaml~=6.0.1
13-
attributedict~=0.3.0
1+
numpy==1.26.4
2+
torch==2.5.1
3+
transformers==4.47.1
4+
tqdm==4.66.6
5+
numba==0.60.0
6+
datasets==3.2.0
7+
accelerate==0.29.3
8+
setuptools==68.2.2
9+
pandas==2.2.3
10+
safetensors==0.4.5
11+
threadpoolctl==3.2.0
12+
attributedict==0.3.0
1413
flash1dkmeans==0.1.4
1514
lm-eval==0.4.3
16-
peft==0.10.0
15+
peft==0.13.2

0 commit comments

Comments
 (0)