1
+ <!-- This file is automatically generated; please do not modify it manually. -->
1
2
<!DOCTYPE html>
2
3
< html lang ="en ">
3
4
< head >
@@ -236,7 +237,7 @@ <h3 id='11' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#11'>11.
236
237
< div >
237
238
238
239
< p class ='author '> < strong > Russell O'Connor</ strong >
239
- (in < a href ="https://coq.inria.fr/cocorico/NotFinitePrimes "> cocorico</ a > ):
240
+ (in < a href ="https://web.archive.org/web/20151210214004/ coq.inria.fr/cocorico/NotFinitePrimes "> https://web.archive.org/web/20151210214004/coq.inria.fr/ cocorico/NotFinitePrimes </ a > ):
240
241
</ p >
241
242
< p class ='comment '> This statement was formerly in cocorico, compatible with Coq 7.3</ p >
242
243
< pre class ='statement '> Theorem ManyPrimes : ~(EX l:(list Prime) | (p:Prime)(In p l)).
@@ -321,7 +322,7 @@ <h3 id='15' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#15'>15.
321
322
< p class ='axioms '> Axioms used: (none)</ p >
322
323
323
324
< p class ='author '> < strong > The Coq development team</ strong >
324
- (in < a href ="https://coq.inria.fr/library/Coq .Reals.RiemannInt.html "> coq's standard library</ a > ):
325
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .Reals.RiemannInt.html "> coq's standard library</ a > ):
325
326
</ p >
326
327
< p class ='comment '> </ p >
327
328
< pre class ='statement '> Lemma FTC_Riemann :
@@ -539,7 +540,7 @@ <h3 id='26' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#26'>26.
539
540
< div >
540
541
541
542
< p class ='author '> < strong > Guillaume Allais</ strong >
542
- (in < a href ="https://coq.inria.fr/library/Coq .Reals.Ratan.html "> coq's standard library</ a > ):
543
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .Reals.Ratan.html "> coq's standard library</ a > ):
543
544
</ p >
544
545
< p class ='comment '> </ p >
545
546
< pre class ='statement '> Lemma PI_2_aux : {z : R | 7 / 8 <= z <= 7 / 4 /\ - cos z = 0}.
@@ -936,7 +937,7 @@ <h3 id='44' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#44'>44.
936
937
< div >
937
938
938
939
< p class ='author '> < strong > The Coq development team</ strong >
939
- (in < a href ="https://coq.inria.fr/library/Coq .Reals.Binomial.html "> coq's standard library</ a > ):
940
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .Reals.Binomial.html "> coq's standard library</ a > ):
940
941
</ p >
941
942
< p class ='comment '> For the non-constructive type R</ p >
942
943
< pre class ='statement '> Lemma binomial :
@@ -1241,7 +1242,7 @@ <h3 id='60' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#60'>60.
1241
1242
< div >
1242
1243
1243
1244
< p class ='author '> < strong > The Coq development team</ strong >
1244
- (in < a href ="https://coq.inria.fr/library/Coq .ZArith.Znumtheory.html "> coq's standard library</ a > ):
1245
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .ZArith.Znumtheory.html "> coq's standard library</ a > ):
1245
1246
</ p >
1246
1247
< p class ='comment '> </ p >
1247
1248
< pre class ='statement '> Inductive Zdivide (a b:Z) : Prop :=
@@ -1377,7 +1378,7 @@ <h3 id='63' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#63'>63.
1377
1378
< div >
1378
1379
1379
1380
< p class ='author '> < strong > Gilles Kahn, Gerard Huet</ strong >
1380
- (in < a href ="https://coq.inria.fr/library/Coq .Sets.Powerset.html "> coq's standard library</ a > ):
1381
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .Sets.Powerset.html "> coq's standard library</ a > ):
1381
1382
</ p >
1382
1383
< p class ='comment '> Naive Set Theory in Coq</ p >
1383
1384
< pre class ='statement '> Theorem Strict_Rel_is_Strict_Included :
@@ -1518,7 +1519,7 @@ <h3 id='69' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#69'>69.
1518
1519
< div >
1519
1520
1520
1521
< p class ='author '> < strong > The Coq development team</ strong >
1521
- (in < a href ="https://coq.inria.fr/library/Coq .ZArith.Znumtheory.html "> coq's standard library</ a > ):
1522
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .ZArith.Znumtheory.html "> coq's standard library</ a > ):
1522
1523
</ p >
1523
1524
< p class ='comment '> The following statement handle binary integers; other types are handled in the same file.</ p >
1524
1525
< pre class ='statement '> Fixpoint Pgcdn (n: nat) (a b : positive) : positive :=
@@ -1630,7 +1631,7 @@ <h3 id='74' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#74'>74.
1630
1631
< div >
1631
1632
1632
1633
< p class ='author '> < strong > Coq's type theory</ strong >
1633
- (in < a href ="https://coq.inria.fr/library/Coq .Init.Datatypes.html "> coq's standard library</ a > ):
1634
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .Init.Datatypes.html "> coq's standard library</ a > ):
1634
1635
</ p >
1635
1636
< p class ='comment '> The induction principle is automatically provided by Coq when defining unary natural numbers.</ p >
1636
1637
< pre class ='statement '> Inductive nat : Set := O : nat | S : nat -> nat.
@@ -1646,7 +1647,7 @@ <h3 id='74' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#74'>74.
1646
1647
< p class ='axioms '> Axioms used: (none)</ p >
1647
1648
1648
1649
< p class ='author '> < strong > The Coq development team</ strong >
1649
- (in < a href ="https://coq.inria.fr/library/Coq .NArith.BinNat.html#N.peano_rect "> coq's standard library</ a > ):
1650
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .NArith.BinNat.html#N.peano_rect "> coq's standard library</ a > ):
1650
1651
</ p >
1651
1652
< p class ='comment '> Peano's induction principle is manually proved for binary natural integers.</ p >
1652
1653
< pre class ='statement '> peano_rect : forall (P : N -> Type),
@@ -1729,7 +1730,7 @@ <h3 id='79' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#79'>79.
1729
1730
< div >
1730
1731
1731
1732
< p class ='author '> < strong > The Coq development team</ strong >
1732
- (in < a href ="https://coq.inria.fr/library/Coq .Reals.Rsqrt_def.html "> coq's standard library</ a > ):
1733
+ (in < a href ="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib .Reals.Rsqrt_def.html "> coq's standard library</ a > ):
1733
1734
</ p >
1734
1735
< p class ='comment '> non constructive version in Coq's standard library</ p >
1735
1736
< pre class ='statement '> Lemma IVT_cor :
0 commit comments