Skip to content

Commit 96a7432

Browse files
committed
updating links to stdlib and cocorico
1 parent 36ba6d3 commit 96a7432

File tree

3 files changed

+24
-22
lines changed

3 files changed

+24
-22
lines changed

gen.js

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -41,11 +41,10 @@ function link_description(url) {
4141
if(m = url.match(/^https:\/\/github.com\/coq-contribs\/([^\/]*)\//))
4242
return `coq-contribs/${m[1]}`;
4343
let known_urls = [
44-
["coq's standard library", "https://coq.inria.fr/library"],
44+
["coq's standard library", "https://rocq-prover.org/doc/V9.0.0/stdlib"],
4545
["mathcomp", "https://math-comp.github.io/"],
4646
["mathcomp", "https://github.com/math-comp/"],
4747
["coq-contribs", "https://github.com/coq-contribs"],
48-
["cocorico", "https://coq.inria.fr/cocorico/"],
4948
];
5049
for (let p of known_urls) {
5150
if (url.match(p[1])) return p[0];
@@ -133,4 +132,6 @@ let page = fs.readFileSync('template.html', 'utf8')
133132
.replace(/(?<=var stats = ){}/, JSON.stringify(stats, null, 2).replace(/\n/g, '\n '))
134133
;
135134

135+
page = "<!-- This file is automatically generated; please do not modify it manually. -->\n" + page;
136+
136137
process.stdout.write(page);

index.html

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
<!-- This file is automatically generated; please do not modify it manually. -->
12
<!DOCTYPE html>
23
<html lang="en">
34
<head>
@@ -236,7 +237,7 @@ <h3 id='11' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#11'>11.
236237
<div>
237238

238239
<p class='author'><strong>Russell O&#039;Connor</strong>
239-
(in <a href="https://coq.inria.fr/cocorico/NotFinitePrimes">cocorico</a>):
240+
(in <a href="https://web.archive.org/web/20151210214004/coq.inria.fr/cocorico/NotFinitePrimes">https://web.archive.org/web/20151210214004/coq.inria.fr/cocorico/NotFinitePrimes</a>):
240241
</p>
241242
<p class='comment'>This statement was formerly in cocorico, compatible with Coq 7.3</p>
242243
<pre class='statement'>Theorem ManyPrimes : ~(EX l:(list Prime) | (p:Prime)(In p l)).
@@ -321,7 +322,7 @@ <h3 id='15' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#15'>15.
321322
<p class='axioms'>Axioms used: (none)</p>
322323

323324
<p class='author'><strong>The Coq development team</strong>
324-
(in <a href="https://coq.inria.fr/library/Coq.Reals.RiemannInt.html">coq's standard library</a>):
325+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.RiemannInt.html">coq's standard library</a>):
325326
</p>
326327
<p class='comment'></p>
327328
<pre class='statement'>Lemma FTC_Riemann :
@@ -539,7 +540,7 @@ <h3 id='26' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#26'>26.
539540
<div>
540541

541542
<p class='author'><strong>Guillaume Allais</strong>
542-
(in <a href="https://coq.inria.fr/library/Coq.Reals.Ratan.html">coq's standard library</a>):
543+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.Ratan.html">coq's standard library</a>):
543544
</p>
544545
<p class='comment'></p>
545546
<pre class='statement'>Lemma PI_2_aux : {z : R | 7 / 8 &lt;= z &lt;= 7 / 4 /\ - cos z = 0}.
@@ -936,7 +937,7 @@ <h3 id='44' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#44'>44.
936937
<div>
937938

938939
<p class='author'><strong>The Coq development team</strong>
939-
(in <a href="https://coq.inria.fr/library/Coq.Reals.Binomial.html">coq's standard library</a>):
940+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.Binomial.html">coq's standard library</a>):
940941
</p>
941942
<p class='comment'>For the non-constructive type R</p>
942943
<pre class='statement'>Lemma binomial :
@@ -1241,7 +1242,7 @@ <h3 id='60' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#60'>60.
12411242
<div>
12421243

12431244
<p class='author'><strong>The Coq development team</strong>
1244-
(in <a href="https://coq.inria.fr/library/Coq.ZArith.Znumtheory.html">coq's standard library</a>):
1245+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.ZArith.Znumtheory.html">coq's standard library</a>):
12451246
</p>
12461247
<p class='comment'></p>
12471248
<pre class='statement'>Inductive Zdivide (a b:Z) : Prop :=
@@ -1377,7 +1378,7 @@ <h3 id='63' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#63'>63.
13771378
<div>
13781379

13791380
<p class='author'><strong>Gilles Kahn, Gerard Huet</strong>
1380-
(in <a href="https://coq.inria.fr/library/Coq.Sets.Powerset.html">coq's standard library</a>):
1381+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sets.Powerset.html">coq's standard library</a>):
13811382
</p>
13821383
<p class='comment'>Naive Set Theory in Coq</p>
13831384
<pre class='statement'>Theorem Strict_Rel_is_Strict_Included :
@@ -1518,7 +1519,7 @@ <h3 id='69' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#69'>69.
15181519
<div>
15191520

15201521
<p class='author'><strong>The Coq development team</strong>
1521-
(in <a href="https://coq.inria.fr/library/Coq.ZArith.Znumtheory.html">coq's standard library</a>):
1522+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.ZArith.Znumtheory.html">coq's standard library</a>):
15221523
</p>
15231524
<p class='comment'>The following statement handle binary integers; other types are handled in the same file.</p>
15241525
<pre class='statement'>Fixpoint Pgcdn (n: nat) (a b : positive) : positive :=
@@ -1630,7 +1631,7 @@ <h3 id='74' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#74'>74.
16301631
<div>
16311632

16321633
<p class='author'><strong>Coq&#039;s type theory</strong>
1633-
(in <a href="https://coq.inria.fr/library/Coq.Init.Datatypes.html">coq's standard library</a>):
1634+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Init.Datatypes.html">coq's standard library</a>):
16341635
</p>
16351636
<p class='comment'>The induction principle is automatically provided by Coq when defining unary natural numbers.</p>
16361637
<pre class='statement'>Inductive nat : Set := O : nat | S : nat -&gt; nat.
@@ -1646,7 +1647,7 @@ <h3 id='74' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#74'>74.
16461647
<p class='axioms'>Axioms used: (none)</p>
16471648

16481649
<p class='author'><strong>The Coq development team</strong>
1649-
(in <a href="https://coq.inria.fr/library/Coq.NArith.BinNat.html#N.peano_rect">coq's standard library</a>):
1650+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.NArith.BinNat.html#N.peano_rect">coq's standard library</a>):
16501651
</p>
16511652
<p class='comment'>Peano's induction principle is manually proved for binary natural integers.</p>
16521653
<pre class='statement'>peano_rect : forall (P : N -&gt; Type),
@@ -1729,7 +1730,7 @@ <h3 id='79' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#79'>79.
17291730
<div>
17301731

17311732
<p class='author'><strong>The Coq development team</strong>
1732-
(in <a href="https://coq.inria.fr/library/Coq.Reals.Rsqrt_def.html">coq's standard library</a>):
1733+
(in <a href="https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.Rsqrt_def.html">coq's standard library</a>):
17331734
</p>
17341735
<p class='comment'>non constructive version in Coq's standard library</p>
17351736
<pre class='statement'>Lemma IVT_cor :

statements.yml

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -133,7 +133,7 @@
133133

134134
- theorem: 11
135135
authors: Russell O'Connor
136-
link: https://coq.inria.fr/cocorico/NotFinitePrimes
136+
link: https://web.archive.org/web/20151210214004/coq.inria.fr/cocorico/NotFinitePrimes
137137
comment: This statement was formerly in cocorico, compatible with Coq 7.3
138138
statement: |
139139
Theorem ManyPrimes : ~(EX l:(list Prime) | (p:Prime)(In p l)).
@@ -194,7 +194,7 @@
194194

195195
- theorem: 15
196196
authors: The Coq development team
197-
link: https://coq.inria.fr/library/Coq.Reals.RiemannInt.html
197+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.RiemannInt.html
198198
statement: |
199199
Lemma FTC_Riemann :
200200
forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
@@ -347,7 +347,7 @@
347347

348348
- theorem: 26
349349
authors: Guillaume Allais
350-
link: https://coq.inria.fr/library/Coq.Reals.Ratan.html
350+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.Ratan.html
351351
statement: |
352352
Lemma PI_2_aux : {z : R | 7 / 8 <= z <= 7 / 4 /\ - cos z = 0}.
353353
Definition PI := 2 * proj1_sig PI_2_aux.
@@ -636,7 +636,7 @@
636636

637637
- theorem: 44
638638
authors: The Coq development team
639-
link: https://coq.inria.fr/library/Coq.Reals.Binomial.html
639+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.Binomial.html
640640
comment: For the non-constructive type R
641641
statement: |
642642
Lemma binomial :
@@ -860,7 +860,7 @@
860860

861861
- theorem: 60
862862
authors: The Coq development team
863-
link: https://coq.inria.fr/library/Coq.ZArith.Znumtheory.html
863+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.ZArith.Znumtheory.html
864864
statement: |
865865
Inductive Zdivide (a b:Z) : Prop :=
866866
Zdivide_intro : forall q:Z, b = q * a -> Zdivide a b.
@@ -978,7 +978,7 @@
978978

979979
- theorem: 63
980980
authors: Gilles Kahn, Gerard Huet
981-
link: https://coq.inria.fr/library/Coq.Sets.Powerset.html
981+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sets.Powerset.html
982982
comment: Naive Set Theory in Coq
983983
statement: |
984984
Theorem Strict_Rel_is_Strict_Included :
@@ -1081,7 +1081,7 @@
10811081

10821082
- theorem: 69
10831083
authors: The Coq development team
1084-
link: https://coq.inria.fr/library/Coq.ZArith.Znumtheory.html
1084+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.ZArith.Znumtheory.html
10851085
comment: The following statement handle binary integers; other types are handled in the same file.
10861086
statement: |
10871087
Fixpoint Pgcdn (n: nat) (a b : positive) : positive :=
@@ -1170,7 +1170,7 @@
11701170

11711171
- theorem: 74
11721172
authors: Coq's type theory
1173-
link: https://coq.inria.fr/library/Coq.Init.Datatypes.html
1173+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Init.Datatypes.html
11741174
comment: The induction principle is automatically provided by Coq when defining unary natural numbers.
11751175
statement: |
11761176
Inductive nat : Set := O : nat | S : nat -> nat.
@@ -1186,7 +1186,7 @@
11861186

11871187
- theorem: 74
11881188
authors: The Coq development team
1189-
link: https://coq.inria.fr/library/Coq.NArith.BinNat.html#N.peano_rect
1189+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.NArith.BinNat.html#N.peano_rect
11901190
comment: Peano's induction principle is manually proved for binary natural integers.
11911191
statement: |
11921192
peano_rect : forall (P : N -> Type),
@@ -1242,7 +1242,7 @@
12421242

12431243
- theorem: 79
12441244
authors: The Coq development team
1245-
link: https://coq.inria.fr/library/Coq.Reals.Rsqrt_def.html
1245+
link: https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Reals.Rsqrt_def.html
12461246
comment: non constructive version in Coq's standard library
12471247
statement: |
12481248
Lemma IVT_cor :

0 commit comments

Comments
 (0)