Skip to content

Commit 3d6170e

Browse files
yossiovadiayovadia
andauthored
Feature/dual classifier yossio (#11)
* Increate tests connection timeout from 30 to 60 * feat: Add dual classifier implementation - Added dual classifier module with training and testing capabilities * docs: Add README for trained_model directory and improve gitignore * small readme update. --------- Co-authored-by: yovadia <[email protected]>
1 parent 4866271 commit 3d6170e

18 files changed

+2187
-6
lines changed

.gitignore

Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -40,3 +40,59 @@ Thumbs.db
4040

4141
# Project specific
4242
bin/
43+
44+
# Model files (too large for git)
45+
*.pt
46+
*.pth
47+
*.bin
48+
*.onnx
49+
*.h5
50+
*/trained_model/*.pt
51+
*/trained_model/*.pth
52+
*/trained_model/*.bin
53+
*/trained_model/*.onnx
54+
*/trained_model/*.h5
55+
*/trained_model/*.json
56+
*/trained_model/*.txt
57+
*/models/*.pt
58+
*/models/*.pth
59+
*/models/*.bin
60+
*/models/*.onnx
61+
*/models/*.h5
62+
*/models/*.json
63+
*/models/*.txt
64+
# Allow README files in model directories
65+
!*/trained_model/README.md
66+
!*/models/README.md
67+
68+
# Added by Claude Task Master
69+
# Logs
70+
logs
71+
*.log
72+
npm-debug.log*
73+
yarn-debug.log*
74+
yarn-error.log*
75+
dev-debug.log
76+
node_modules/
77+
# Editor directories and files
78+
.idea
79+
.vscode
80+
*.suo
81+
*.ntvs*
82+
*.njsproj
83+
*.sln
84+
*.sw?
85+
# Task files
86+
tasks.json
87+
tasks/
88+
.cursor/
89+
.roo/
90+
.env.example
91+
.taskmasterconfig
92+
example_prd.txt
93+
.roomodes
94+
.windsurfrules
95+
scripts/prd.txt
96+
.env.taskmaster
97+
package-lock.json
98+
package.json
Lines changed: 151 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,151 @@
1+
# Task 2 Testing Summary: Dual-Head Architecture POC with Training
2+
3+
## Overview
4+
Task 2 successfully implemented and tested a complete dual-purpose DistilBERT classifier with comprehensive training infrastructure for both category classification and PII detection using a shared model architecture.
5+
6+
## Test Coverage
7+
8+
### ✅ Component Tests (14/14 Passed)
9+
10+
#### 1. Synthetic Data Generator Tests
11+
- **Initialization**: Validates proper setup of 10 categories, templates, and 5 PII pattern types
12+
- **Sample Generation**: Tests both PII and non-PII sample creation with proper labeling
13+
- **Dataset Generation**: Validates batch dataset creation with configurable PII ratios
14+
- **PII Pattern Detection**: Confirms email and phone number detection in text
15+
16+
#### 2. Dual-Task Dataset Tests
17+
- **Dataset Creation**: Validates PyTorch Dataset implementation with correct tensor shapes
18+
- **Tokenization**: Tests DistilBERT tokenizer integration with proper padding/truncation
19+
- **Label Alignment**: Ensures category and PII labels align with tokenized sequences
20+
21+
#### 3. Dual-Task Loss Function Tests
22+
- **Loss Initialization**: Validates weighted loss combining category and PII objectives
23+
- **Loss Computation**: Tests gradient flow and loss calculation for both tasks
24+
- **Padding Mask Handling**: Ensures padded tokens are properly ignored in PII loss
25+
26+
#### 4. Dual-Task Trainer Tests
27+
- **Trainer Initialization**: Validates setup with proper data loaders and optimizers
28+
- **Training Step**: Confirms model parameters update during training
29+
- **Evaluation**: Tests validation metrics calculation (accuracy, F1-score)
30+
- **Model Persistence**: Validates save/load functionality with state preservation
31+
32+
#### 5. Integration Tests
33+
- **End-to-End Training**: Complete training pipeline with 2 epochs
34+
- **Memory Efficiency**: Confirms dual-head architecture has reasonable parameter count (~67M)
35+
36+
## Performance Results
37+
38+
### Training Performance
39+
- **Dataset Size**: 50 training samples, 20 validation samples
40+
- **Training Time**: 18.6 seconds (0.372 seconds per sample)
41+
- **Performance Rating**: 🚀 Excellent performance!
42+
- **System**: 8-core CPU, 16GB RAM (no GPU required)
43+
44+
### Model Architecture
45+
- **Base Model**: DistilBERT (66M parameters)
46+
- **Total Parameters**: 67,553,292 (efficient shared backbone)
47+
- **Category Head**: 10-class classification
48+
- **PII Head**: Token-level binary classification
49+
50+
### Training Results (From Previous Run)
51+
- **Final Training Metrics**:
52+
- Training Loss: 1.4948
53+
- Category Loss: 1.3069
54+
- PII Loss: 0.1879
55+
- **Final Validation Metrics**:
56+
- Validation Loss: 1.5169
57+
- Category Accuracy: 45%
58+
- PII F1-Score: 91.09%
59+
60+
## Test Infrastructure
61+
62+
### Automated Testing
63+
```bash
64+
# Run full test suite
65+
python -m pytest test_dual_classifier_system.py -v
66+
67+
# Run with performance test
68+
python test_dual_classifier_system.py
69+
```
70+
71+
### Manual Validation
72+
```bash
73+
# Test existing trained model
74+
python test_existing_model.py
75+
```
76+
77+
## Key Technical Achievements
78+
79+
### 1. **Multi-Task Learning Architecture**
80+
- Single DistilBERT backbone serving dual purposes
81+
- Separate classification heads for different tasks
82+
- Shared representations for memory efficiency
83+
84+
### 2. **Robust Training Pipeline**
85+
- Combined loss function with task weighting
86+
- Proper gradient flow and parameter updates
87+
- Validation metrics for both tasks
88+
89+
### 3. **Synthetic Data Generation**
90+
- 10 category templates (math, science, history, etc.)
91+
- 5 PII pattern types (email, phone, SSN, name, address)
92+
- Configurable PII injection rates
93+
- Token-level PII labeling
94+
95+
### 4. **Production-Ready Features**
96+
- Model persistence (save/load)
97+
- Training history tracking
98+
- Progress monitoring with tqdm
99+
- Memory-efficient data loading
100+
101+
## Testing Methodology
102+
103+
### Unit Tests
104+
- Individual component validation
105+
- Mock data for isolated testing
106+
- Edge case handling
107+
108+
### Integration Tests
109+
- Full pipeline validation
110+
- Real data flow testing
111+
- Performance benchmarking
112+
113+
### Validation Tests
114+
- Model loading/saving
115+
- Prediction consistency
116+
- Memory efficiency
117+
118+
## File Structure
119+
```
120+
dual_classifier/
121+
├── test_dual_classifier_system.py # Comprehensive test suite
122+
├── test_existing_model.py # Trained model validation
123+
├── DUAL_CLASSIFIER_SYSTEM_TEST_SUMMARY.md # This summary
124+
├── dual_classifier.py # Core model implementation
125+
├── trainer.py # Training infrastructure
126+
├── data_generator.py # Synthetic data generation
127+
├── train_example.py # Training demonstration
128+
└── trained_model/ # Saved model artifacts
129+
```
130+
131+
## Success Criteria Met
132+
133+
**Dual-Purpose Architecture**: Single model for both category and PII classification
134+
**Memory Optimization**: Shared backbone reduces total parameters vs. separate models
135+
**Training Infrastructure**: Complete pipeline with loss functions and metrics
136+
**Data Generation**: Synthetic dataset with realistic PII patterns
137+
**Model Persistence**: Save/load functionality with state preservation
138+
**Performance Validation**: Acceptable training speed on laptop hardware
139+
**Test Coverage**: Comprehensive test suite with 14 passing tests
140+
141+
## Next Steps
142+
Task 2 is fully complete and validated. The implementation provides a solid foundation for:
143+
- Task 3: Data Pipeline Implementation (real dataset integration)
144+
- Task 4: Advanced Training Pipeline (optimization and scaling)
145+
- Task 5: Rust Implementation with Candle (performance optimization)
146+
147+
## Performance Notes
148+
- Training completes in under 20 seconds for 50 samples
149+
- Model achieves 45% category accuracy and 91% PII F1-score on small synthetic dataset
150+
- Memory usage is efficient for laptop deployment
151+
- No GPU required for development and testing

0 commit comments

Comments
 (0)