|
| 1 | +#ExPose |
| 2 | + |
| 3 | +## Introduction |
| 4 | +We provide the config files for ExPose: [Monocular Expressive Body Regression through Body-Driven Attention](https://arxiv.org/abs/2008.09062). |
| 5 | + |
| 6 | + |
| 7 | +```BibTeX |
| 8 | +@inproceedings{ExPose:2020, |
| 9 | + title = {Monocular Expressive Body Regression through Body-Driven Attention}, |
| 10 | + author = {Choutas, Vasileios and Pavlakos, Georgios and Bolkart, Timo and Tzionas, Dimitrios and Black, Michael J.}, |
| 11 | + booktitle = {European Conference on Computer Vision (ECCV)}, |
| 12 | + pages = {20--40}, |
| 13 | + year = {2020}, |
| 14 | + url = {https://expose.is.tue.mpg.de} |
| 15 | +} |
| 16 | +``` |
| 17 | + |
| 18 | +## Notes |
| 19 | + |
| 20 | +- [SMPLX](https://smpl-x.is.tue.mpg.de/) v1.1 is used in our experiments. |
| 21 | +- [FLAME](https://flame.is.tue.mpg.de/) 2019 is used in our experiments. |
| 22 | +- [MANO](https://mano.is.tue.mpg.de/) v1.2 is used in our experiments. |
| 23 | +- [SMPL](https://smpl.is.tue.mpg.de/) v1.0 is used for body evaluation on 3DPW. |
| 24 | +- [all_means.pkl](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/data/body_models/smplx/all_means.pkl?versionId=CAEQRBiBgIChyabujhgiIDQwNDMzNzlmM2U4ZTQzNWY5NjUxMmU4ZGQ4NGMwNmIx) |
| 25 | +- [J_regressor_h36m.npy](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/J_regressor_h36m.npy?versionId=CAEQHhiBgIDE6c3V6xciIDdjYzE3MzQ4MmU4MzQyNmRiZDA5YTg2YTI5YWFkNjRi) |
| 26 | +- [MANO_SMPLX_vertex_ids.pkl](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/data/body_models/smplx/MANO_SMPLX_vertex_ids.pkl?versionId=CAEQRBiBgIDjx9v4jhgiIDJjZjhiMWI1ZGRmMTRmMTI5MDVkMzJkMWUyYTQxZDk2) |
| 27 | +- [shape_mean.npy](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/data/body_models/smplx/shape_mean.npy?versionId=CAEQRBiBgIDqwKbujhgiIGM4OTIxMWM3MDNiNzQxN2RiOTRjNDIwZTNiMzdmMDVi) |
| 28 | +- [SMPL-X__FLAME_vertex_ids.npy](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/data/body_models/smplx/SMPL-X__FLAME_vertex_ids.npy?versionId=CAEQRBiBgMDUyNv4jhgiIDBlYzNkOTI2YzFlZjRmZWZiZTJkM2IwZGZhZjg4NzE5) |
| 29 | +- [SMPLX_to_J14.npy](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/data/body_models/smplx/SMPLX_to_J14.npy?versionId=CAEQRBiBgMDd26fujhgiIDQ3ODhmOGJhMzhhMzQ2M2Y4MTRlNDcxY2VjNmUzY2Qy) |
| 30 | +- [flame_dynamic_embedding.npy](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/data/body_models/smplx/flame_dynamic_embedding.npy?versionId=CAEQRBiBgMCn4abujhgiIDBmNmEzYTBiZmIzYjQ5NTg4MmVhZGRjYTYwNWU2MGRk) |
| 31 | +- [flame_static_embedding.npy](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/data/body_models/smplx/flame_static_embedding.pkl?versionId=CAEQRBiBgMCAxqbujhgiIGIzMTRiZjZkZjRhMDQ4NzA5YmU2YjQyMTNmYmQ5OWI5) |
| 32 | +- [ExPose_curated_fits](https://expose.is.tue.mpg.de) |
| 33 | +- [spin_in_smplx](https://expose.is.tue.mpg.de) |
| 34 | +- [ffhq_annotations.npz](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/datasets/ffhq_annotations.npz?versionId=CAEQRBiBgMCO46zvjhgiIDJhNDhlYTM2N2NmYjRmM2I4NWI2NDY0ZWM4NjExMzhm) We run [RingNet](https://ringnet.is.tue.mpg.de/) on FFHQ and then fitting to FAN 2D landmarks by [flame-fitting](https://github.com/HavenFeng/photometric_optimization). |
| 35 | + |
| 36 | +As for pretrained model (hrnet_hmr_expose_body.pth). You can download it from [here](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/body/hrnet_hmr_expose_body-d7db2e53_20220708.pth?versionId=CAEQRBiBgMDFt6zujhgiIDMxODBkODE4ZTI5NjQ1OTRiN2I0MDM4NWMwOTA1NTFm) and change the path of pretrained model in the config. |
| 37 | +You can also pretrain the model using [hrnet_hmr_expose_body.py](hrnet_hmr_expose_body.py). |
| 38 | + |
| 39 | +As for pretrained model (resnet18_hmr_expose_face.pth). You can download it from [here](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/face/resnet18_hmr_expose_face-aca68aad_20220708.pth?versionId=CAEQRBiBgMCbvbbujhgiIGMxY2RlMjUyMGY4MjRmMDhiM2VkM2VhNWU4Y2ZjODZi) and change the path of pretrained model in the config. |
| 40 | +You can also pretrain the model using [resnet18_hmr_expose_face.py](resnet18_hmr_expose_face.py). |
| 41 | + |
| 42 | +As for pretrained model (resnet18_hmr_expose_hand.pth). You can download it from [here](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/hand/resnet18_hmr_expose_hand-c6cf0236_20220708.pth?versionId=CAEQRBiBgIDvqbbujhgiIGFiZTI3YmFkOTMyMTQxZWNiYjQxYzU0NjM0N2U1ZGVh) and change the path of pretrained model in the config. |
| 43 | +You can also pretrain the model using [resnet18_hmr_expose_hand.py](resnet18_hmr_expose_hand.py). |
| 44 | + |
| 45 | +Download the above resources and arrange them in the following file structure: |
| 46 | + |
| 47 | +```text |
| 48 | +mmhuman3d |
| 49 | +├── mmhuman3d |
| 50 | +├── docs |
| 51 | +├── tests |
| 52 | +├── tools |
| 53 | +├── configs |
| 54 | +└── data |
| 55 | + ├── body_models |
| 56 | + │ ├── all_means.pkl |
| 57 | + │ ├── J_regressor_h36m.npy |
| 58 | + │ ├── flame |
| 59 | + │ │ ├── FLAME_NEUTRAL.pkl |
| 60 | + │ │ ├── flame_dynamic_embedding.npy |
| 61 | + │ │ └── flame_static_embedding.npy |
| 62 | + │ ├── mano |
| 63 | + │ │ └── MANO_RIGHT.pkl |
| 64 | + │ ├── smpl |
| 65 | + │ │ ├── SMPL_FEMALE.pkl |
| 66 | + │ │ ├── SMPL_MALE.pkl |
| 67 | + │ │ └── SMPL_NEUTRAL.pkl |
| 68 | + │ └── smplx |
| 69 | + │ ├── all_means.pkl |
| 70 | + │ ├── MANO_SMPLX_vertex_ids.pkl |
| 71 | + │ ├── shape_mean.npy |
| 72 | + │ ├── SMPL-X__FLAME_vertex_ids.npy |
| 73 | + │ ├── SMPLX_to_J14.npy |
| 74 | + │ └── SMPLX_NEUTRAL.pkl |
| 75 | + ├── pretrained_models |
| 76 | + │ ├── hrnet_pretrain.pth |
| 77 | + │ ├── resnet18.pth |
| 78 | + │ ├── hrnet_hmr_expose_body.pth |
| 79 | + │ ├── resnet18_hmr_expose_face.pth |
| 80 | + │ └── resnet18_hmr_expose_hand.pth |
| 81 | + ├── preprocessed_datasets |
| 82 | + │ ├── curated_fits_train.npz |
| 83 | + │ ├── ehf_val.npz |
| 84 | + │ ├── ffhq_flame_train.npz |
| 85 | + │ ├── freihand_test.npz |
| 86 | + │ ├── freihand_train.npz |
| 87 | + │ ├── freihand_val.npz |
| 88 | + │ ├── h36m_smplx_train.npz |
| 89 | + │ ├── pw3d_test.npz |
| 90 | + │ ├── spin_smplx_train.npz |
| 91 | + │ └── stirling_ESRC3D_HQ.npz |
| 92 | + └── datasets |
| 93 | + ├── 3DPW |
| 94 | + ├── coco |
| 95 | + ├── EHF |
| 96 | + ├── ExPose_curated_fits |
| 97 | + │ └── train.npz |
| 98 | + ├── ffhq |
| 99 | + │ ├── ffhq_annotations.npz |
| 100 | + │ └── ffhq_global_images_1024 |
| 101 | + ├── FreiHand |
| 102 | + ├── h36m |
| 103 | + ├── lsp |
| 104 | + │ ├── lsp_dataset_original |
| 105 | + │ └── lspet |
| 106 | + ├── mpii |
| 107 | + ├── spin_in_smplx |
| 108 | + │ ├── coco.npz |
| 109 | + │ ├── lsp.npz |
| 110 | + │ ├── lspet.npz |
| 111 | + │ └── mpii.npz |
| 112 | + └── stirling |
| 113 | + ├── annotations |
| 114 | + ├── F_3D_N |
| 115 | + ├── M_3D_N |
| 116 | + └── Subset_2D_FG2018 |
| 117 | +``` |
| 118 | + |
| 119 | +## Results and Models |
| 120 | + |
| 121 | +We evaluate hrnet_hmr_expose_body on 3DPW. Values are MPJPE/PA-MPJPE. |
| 122 | + |
| 123 | +| Config | 3DPW | Download | |
| 124 | +|:------:|:-------:|:------:| |
| 125 | +| [hrnet_hmr_expose_body.py](hrnet_hmr_expose_body.py) | 92.59 / 60.43 | [model](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/body/hrnet_hmr_expose_body-d7db2e53_20220708.pth?versionId=CAEQRBiBgMDFt6zujhgiIDMxODBkODE4ZTI5NjQ1OTRiN2I0MDM4NWMwOTA1NTFm) | [log](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/body/20220704_005929.log?versionId=CAEQRBiBgMDCt6zujhgiIGJiYzY0ODdlMGZlMjRjYmZhZDc5YTY2YzM0OTk0NDc3) | |
| 126 | + |
| 127 | + |
| 128 | +We evaluate resnet18_hmr_expose_face on Stirling/ESRC 3D. Values are 3DRMSE. |
| 129 | +| Config | Stirling/ESRC 3D | Download | |
| 130 | +|:------:|:-------:|:------:| |
| 131 | +| [resnet18_hmr_expose_face.py](resnet18_hmr_expose_face.py) | 2.40 | [model](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/face/resnet18_hmr_expose_face-aca68aad_20220708.pth?versionId=CAEQRBiBgMCbvbbujhgiIGMxY2RlMjUyMGY4MjRmMDhiM2VkM2VhNWU4Y2ZjODZi) | [log](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/face/20220630_111340.log?versionId=CAEQRBiBgICFtLbujhgiIGUzYmEyOGU3N2ZkOTRkNDM5OTIyODZiOWQ1MzJiMWZj) | |
| 132 | + |
| 133 | +We evaluate resnet18_hmr_expose_hand on FreiHand. Values are PA-MPJPE/PA-PVE. |
| 134 | +| Config | FreiHand | Download | |
| 135 | +|:------:|:-------:|:------:| |
| 136 | +| [resnet18_hmr_expose_hand.py](resnet18_hmr_expose_hand.py) | 10.03 / 9.61 | [model](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/hand/resnet18_hmr_expose_hand-c6cf0236_20220708.pth?versionId=CAEQRBiBgIDvqbbujhgiIGFiZTI3YmFkOTMyMTQxZWNiYjQxYzU0NjM0N2U1ZGVh) | [log](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/hand/20220630_110254.log?versionId=CAEQRBiBgMCSuLbujhgiIDlmNDdhODg2MjA2NzQ1Njg5MTBlNWM1NDIxY2QyZmM2) | |
| 137 | + |
| 138 | +We evaluate ExPose on EHF. Values are BODY PA-MPJPE/RIGHT_HAND PA-MPJPE/LEFT_HAND PA-MPJPE/PA-PVE/RIGHT_HAND PA-PVE/LEFT_HAND PA-PVE/FACE PA-PVE. |
| 139 | +| Config | EHF | Download | |
| 140 | +|:------:|:-------:|:------:| |
| 141 | +| [expose.py](expose.py) | 55.70 / 14.6 / 14.4/ 56.65 / 14.6 / 14.5 / 6.90 | [model](https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/expose/expose/expose-d9d5dbf7_20220708.pth?versionId=CAEQRBiBgMC8vbbujhgiIDg0NWUyM2ZiZGY3MzQ0YmI5YjFjYTA0Y2Q5NDE3MDEw) |
0 commit comments