@@ -74,7 +74,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
74
74
75
75
# Phase 1
76
76
# -------------------------------------------------------------------------
77
- # Find time intervals where at least one channel is excentric -> w == 0
77
+ # Find time intervals where at least one channel is eccentric -> w == 0
78
78
# Compute covariance on artifact-free data.
79
79
80
80
iter = n_iter
@@ -87,7 +87,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
87
87
# Compute channel data estimated from its neighbours
88
88
z = _project_channel (X [:, neighbours ], c0 , ch , neighbours )
89
89
90
- # Compute excentricity over time
90
+ # Compute eccentricity over time
91
91
d [:, ch ] = _eccentricity (X [:, ch ][:, None ], z , w , n_smooth ).T
92
92
d [:, ch ] = d [:, ch ] / thresh
93
93
@@ -122,7 +122,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
122
122
d = _eccentricity (X , None , w , n_smooth )
123
123
124
124
rank = np .argsort (d , axis = 1 )[:, ::- 1 ].astype (float )
125
- rank [np .where (w )[0 ], :] = np .nan # exclude parts that are not excentric
125
+ rank [np .where (w )[0 ], :] = np .nan # exclude parts that are not eccentric
126
126
127
127
depth = np .min ((depth , n_chans - 1 ))
128
128
ww = np .ones (X .shape )
@@ -134,7 +134,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
134
134
for ch in np .arange (n_chans ):
135
135
neighbours = _closest_neighbours (closest , ch , n_chans )
136
136
137
- # find samples where channel `ch` is the most excentric
137
+ # find samples where channel `ch` is the most eccentric
138
138
bad_samples = np .where (ch == rank [:, i_depth ])[0 ]
139
139
if i_depth != 0 : # exclude if not very bad
140
140
bad_samples = np .delete (
0 commit comments