Skip to content

Commit f3b95c4

Browse files
authored
Trigger github actions on PR (#5)
* Trigger github actions on PR * Update pythonpackage.yml * Update pythonpackage.yml * pep
1 parent 9f33149 commit f3b95c4

File tree

2 files changed

+9
-7
lines changed

2 files changed

+9
-7
lines changed

.github/workflows/pythonpackage.yml

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,11 @@ name: unit-tests
22

33
on:
44
push:
5-
branches-ignore:
6-
- 'gh-pages'
7-
5+
branches:
6+
- master
7+
pull_request:
8+
branches:
9+
- master
810
jobs:
911
build:
1012

meegkit/star.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
7474

7575
# Phase 1
7676
# -------------------------------------------------------------------------
77-
# Find time intervals where at least one channel is excentric -> w == 0
77+
# Find time intervals where at least one channel is eccentric -> w == 0
7878
# Compute covariance on artifact-free data.
7979

8080
iter = n_iter
@@ -87,7 +87,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
8787
# Compute channel data estimated from its neighbours
8888
z = _project_channel(X[:, neighbours], c0, ch, neighbours)
8989

90-
# Compute excentricity over time
90+
# Compute eccentricity over time
9191
d[:, ch] = _eccentricity(X[:, ch][:, None], z, w, n_smooth).T
9292
d[:, ch] = d[:, ch] / thresh
9393

@@ -122,7 +122,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
122122
d = _eccentricity(X, None, w, n_smooth)
123123

124124
rank = np.argsort(d, axis=1)[:, ::-1].astype(float)
125-
rank[np.where(w)[0], :] = np.nan # exclude parts that are not excentric
125+
rank[np.where(w)[0], :] = np.nan # exclude parts that are not eccentric
126126

127127
depth = np.min((depth, n_chans - 1))
128128
ww = np.ones(X.shape)
@@ -134,7 +134,7 @@ def star(X, thresh=1, closest=[], depth=1, pca_thresh=1e-15, n_smooth=10,
134134
for ch in np.arange(n_chans):
135135
neighbours = _closest_neighbours(closest, ch, n_chans)
136136

137-
# find samples where channel `ch` is the most excentric
137+
# find samples where channel `ch` is the most eccentric
138138
bad_samples = np.where(ch == rank[:, i_depth])[0]
139139
if i_depth != 0: # exclude if not very bad
140140
bad_samples = np.delete(

0 commit comments

Comments
 (0)