|
| 1 | +# run_ppo.py |
| 2 | + |
| 3 | +import warnings |
| 4 | +from transformers import GPT2LMHeadModel, GPT2Tokenizer |
| 5 | +from datasets import load_from_disk |
| 6 | +from trl import PPOTrainer, PPOConfig |
| 7 | +from trl import AutoModelForCausalLMWithValueHead |
| 8 | +from trl.core import LengthSampler |
| 9 | +from transformers import pipeline |
| 10 | +import torch |
| 11 | +import csv |
| 12 | + |
| 13 | +warnings.filterwarnings("ignore", message="`resume_download` is deprecated") |
| 14 | +warnings.filterwarnings("ignore", message="Xformers is not installed correctly") |
| 15 | +warnings.filterwarnings("ignore", message="No dataset is provided.") |
| 16 | + |
| 17 | +# Set device |
| 18 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 19 | + |
| 20 | +# Load tokenizer and model |
| 21 | +tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
| 22 | +tokenizer.pad_token = tokenizer.eos_token |
| 23 | +model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2").to(device) |
| 24 | + |
| 25 | +# Load preprocessed IMDb data (negative reviews only) |
| 26 | +dataset = load_from_disk("tokenized_imdb_negative") |
| 27 | + |
| 28 | +# Sample a few prompts for training |
| 29 | +#prompts = [tokenizer.decode(example["input_ids"][:64]) for example in dataset.select(range(64))] |
| 30 | +prompts = ["Generate a negative movie review:\n" + tokenizer.decode(example["input_ids"][:64]) # 12,500 |
| 31 | + for example in dataset.select(range(50))] # 50 for minimal experience |
| 32 | + |
| 33 | +print("prompts", prompts) |
| 34 | + |
| 35 | +# Load reward model (IMDb classifier) |
| 36 | +reward_pipe = pipeline( |
| 37 | + "text-classification", |
| 38 | + model="wrmurray/roberta-base-finetuned-imdb", |
| 39 | + device=0 if device == "cuda" else -1 |
| 40 | +) |
| 41 | + |
| 42 | +# PPO config |
| 43 | +ppo_config = PPOConfig( |
| 44 | + model_name="gpt2", |
| 45 | + learning_rate=1.41e-5, |
| 46 | + batch_size=1, |
| 47 | + mini_batch_size=1, |
| 48 | + ppo_epochs=4, |
| 49 | + log_with="tensorboard", |
| 50 | + kl_penalty="kl", |
| 51 | + target_kl=6.0 |
| 52 | +) |
| 53 | + |
| 54 | +ppo_trainer = PPOTrainer( |
| 55 | + config=ppo_config, |
| 56 | + model=model, |
| 57 | + tokenizer=tokenizer |
| 58 | +) |
| 59 | + |
| 60 | +log_file = open("ppo_logs/ppo_training_log.csv", "w", newline='') |
| 61 | +csv_writer = csv.writer(log_file) |
| 62 | +csv_writer.writerow(["epoch", "reward", "kl_divergence", "response"]) |
| 63 | + |
| 64 | +# Training loop |
| 65 | +for epoch, prompt in enumerate(prompts): # epoch -> step: naming issue |
| 66 | + # Encode prompt |
| 67 | + input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) |
| 68 | + |
| 69 | + # Generate response |
| 70 | + generation_output = model.generate( |
| 71 | + input_ids, |
| 72 | + max_new_tokens=64, |
| 73 | + pad_token_id=tokenizer.eos_token_id |
| 74 | + ) |
| 75 | + response = tokenizer.decode(generation_output[0][input_ids.shape[-1]:], skip_special_tokens=True) |
| 76 | + |
| 77 | + # Compute reward |
| 78 | + reward_output = reward_pipe(response) |
| 79 | + reward_score = reward_output[0]["score"] |
| 80 | + reward_tensor = torch.tensor(reward_score).to(device) |
| 81 | + rewards = [reward_tensor] |
| 82 | + |
| 83 | + # PPO step |
| 84 | + query_tensor = tokenizer(prompt, return_tensors="pt").input_ids[0].to(device) |
| 85 | + response_tensor = tokenizer(response, return_tensors="pt").input_ids[0].to(device) |
| 86 | + ppo_trainer.step([query_tensor], [response_tensor], rewards) |
| 87 | + |
| 88 | + train_stats = ppo_trainer.step([query_tensor], [response_tensor], rewards) |
| 89 | + |
| 90 | + kl_value = train_stats.get("kl", train_stats.get("objective/kl", None)) |
| 91 | + |
| 92 | + csv_writer.writerow([epoch + 1, reward_score, kl_value, response]) |
| 93 | + |
| 94 | + # Log progress |
| 95 | + print(f"[{epoch+1}/{len(prompts)}] Reward: {reward_score:.4f} | Response: {response[:80]}...", flush=True) |
| 96 | + |
| 97 | +print("Training complete.") |
| 98 | + |
| 99 | +# Save fine-tuned model |
| 100 | +model.save_pretrained("ppo_gpt2_finetuned_model") |
| 101 | +tokenizer.save_pretrained("ppo_gpt2_finetuned_model") |
| 102 | + |
| 103 | +print("Saving complete.") |
| 104 | + |
0 commit comments