@@ -21,6 +21,7 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
21
21
22
22
| Model Name | Dataset | IC | ICIR | Rank IC | Rank ICIR | Annualized Return | Information Ratio | Max Drawdown |
23
23
| ------------------------------------------| -------------------------------------| -------------| -------------| -------------| -------------| -------------------| -------------------| --------------|
24
+ | TCN(Shaojie Bai, et al.) | Alpha158 | 0.0275±0.00 | 0.2157±0.01 | 0.0411±0.00 | 0.3379±0.01 | 0.0190±0.02 | 0.2887±0.27 | -0.1202±0.03 |
24
25
| TabNet(Sercan O. Arik, et al.) | Alpha158 | 0.0204±0.01 | 0.1554±0.07 | 0.0333±0.00 | 0.2552±0.05 | 0.0227±0.04 | 0.3676±0.54 | -0.1089±0.08 |
25
26
| Transformer(Ashish Vaswani, et al.) | Alpha158 | 0.0264±0.00 | 0.2053±0.02 | 0.0407±0.00 | 0.3273±0.02 | 0.0273±0.02 | 0.3970±0.26 | -0.1101±0.02 |
26
27
| GRU(Kyunghyun Cho, et al.) | Alpha158(with selected 20 features) | 0.0315±0.00 | 0.2450±0.04 | 0.0428±0.00 | 0.3440±0.03 | 0.0344±0.02 | 0.5160±0.25 | -0.1017±0.02 |
@@ -38,8 +39,6 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
38
39
| MLP | Alpha158 | 0.0376±0.00 | 0.2846±0.02 | 0.0429±0.00 | 0.3220±0.01 | 0.0895±0.02 | 1.1408±0.23 | -0.1103±0.02 |
39
40
| LightGBM(Guolin Ke, et al.) | Alpha158 | 0.0448±0.00 | 0.3660±0.00 | 0.0469±0.00 | 0.3877±0.00 | 0.0901±0.00 | 1.0164±0.00 | -0.1038±0.00 |
40
41
| DoubleEnsemble(Chuheng Zhang, et al.) | Alpha158 | 0.0544±0.00 | 0.4340±0.00 | 0.0523±0.00 | 0.4284±0.01 | 0.1168±0.01 | 1.3384±0.12 | -0.1036±0.01 |
41
- | TCN | Alpha158 | 0.0275±0.00 | 0.2157±0.01 | 0.0411±0.00 | 0.3379±0.01 | 0.0190±0.02 | 0.2887±0.27 | -0.1202±0.03 |
42
-
43
42
44
43
45
44
## Alpha360 dataset
@@ -54,13 +53,14 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
54
53
| XGBoost(Tianqi Chen, et al.) | Alpha360 | 0.0394±0.00 | 0.2909±0.00 | 0.0448±0.00 | 0.3679±0.00 | 0.0344±0.00 | 0.4527±0.02 | -0.1004±0.00 |
55
54
| DoubleEnsemble(Chuheng Zhang, et al.) | Alpha360 | 0.0404±0.00 | 0.3023±0.00 | 0.0495±0.00 | 0.3898±0.00 | 0.0468±0.01 | 0.6302±0.20 | -0.0860±0.01 |
56
55
| LightGBM(Guolin Ke, et al.) | Alpha360 | 0.0400±0.00 | 0.3037±0.00 | 0.0499±0.00 | 0.4042±0.00 | 0.0558±0.00 | 0.7632±0.00 | -0.0659±0.00 |
56
+ | TCN(Shaojie Bai, et al.) | Alpha360 | 0.0441±0.00 | 0.3301±0.02 | 0.0519±0.00 | 0.4130±0.01 | 0.0604±0.02 | 0.8295±0.34 | -0.1018±0.03 |
57
57
| ALSTM (Yao Qin, et al.) | Alpha360 | 0.0497±0.00 | 0.3829±0.04 | 0.0599±0.00 | 0.4736±0.03 | 0.0626±0.02 | 0.8651±0.31 | -0.0994±0.03 |
58
58
| LSTM(Sepp Hochreiter, et al.) | Alpha360 | 0.0448±0.00 | 0.3474±0.04 | 0.0549±0.00 | 0.4366±0.03 | 0.0647±0.03 | 0.8963±0.39 | -0.0875±0.02 |
59
59
| GRU(Kyunghyun Cho, et al.) | Alpha360 | 0.0493±0.00 | 0.3772±0.04 | 0.0584±0.00 | 0.4638±0.03 | 0.0720±0.02 | 0.9730±0.33 | -0.0821±0.02 |
60
+ | AdaRNN(Yuntao Du, et al.) | Alpha360 | 0.0464±0.01 | 0.3619±0.08 | 0.0539±0.01 | 0.4287±0.06 | 0.0753±0.03 | 1.0200±0.40 | -0.0936±0.03 |
60
61
| GATs (Petar Velickovic, et al.) | Alpha360 | 0.0476±0.00 | 0.3508±0.02 | 0.0598±0.00 | 0.4604±0.01 | 0.0824±0.02 | 1.1079±0.26 | -0.0894±0.03 |
61
62
| TCTS(Xueqing Wu, et al.) | Alpha360 | 0.0508±0.00 | 0.3931±0.04 | 0.0599±0.00 | 0.4756±0.03 | 0.0893±0.03 | 1.2256±0.36 | -0.0857±0.02 |
62
63
| TRA(Hengxu Lin, et al.) | Alpha360 | 0.0485±0.00 | 0.3787±0.03 | 0.0587±0.00 | 0.4756±0.03 | 0.0920±0.03 | 1.2789±0.42 | -0.0834±0.02 |
63
- | TCN(Shaojie Bai, et al.) | Alpha360 | 0.0441±0.00 | 0.3301±0.02 | 0.0519±0.00 | 0.4130±0.01 | 0.0604±0.02 | 0.8295±0.34 | -0.1018±0.03 |
64
64
65
65
- The selected 20 features are based on the feature importance of a lightgbm-based model.
66
66
- The base model of DoubleEnsemble is LGBM.
0 commit comments