Skip to content

Commit 4957f38

Browse files
committed
doc, trailing spaces
1 parent 7346645 commit 4957f38

File tree

1 file changed

+44
-25
lines changed

1 file changed

+44
-25
lines changed

theories/topology_theory/discrete_topology.v

Lines changed: 44 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -3,58 +3,77 @@ From mathcomp Require Import all_ssreflect all_algebra all_classical all_reals.
33
From mathcomp Require Import topology_structure uniform_structure.
44
From mathcomp Require Import order_topology pseudometric_structure compact.
55

6+
(**md**************************************************************************)
7+
(* # Discrete Topology *)
8+
(* ``` *)
9+
(* discreteNbhsType == *)
10+
(* discrete_ent == entourages of the discrete uniformity *)
11+
(* topology, equipped with the Uniform *)
12+
(* structure *)
13+
(* discrete_ball == singleton balls for the discrete metric, *)
14+
(* equipped with the Uniform structure *)
15+
(* discreteTopologicalType == type of choice types with a discrete *)
16+
(* topology *)
17+
(* discreteOrderTopologicalType == *)
18+
(* pdiscreteTopologicalType == *)
19+
(* pdiscreteOrderTopologicalType == *)
20+
(* discreteUniformType == *)
21+
(* discretePseudoMetricType == *)
22+
(* discrete_topology T == alias attaching discrete structures for *)
23+
(* topology, uniformity, and pseudometric *)
24+
(* ``` *)
25+
(******************************************************************************)
626
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
727

828
Local Open Scope classical_set_scope.
929
Local Open Scope ring_scope.
1030

11-
1231
HB.mixin Record Discrete_ofNbhs T of Nbhs T := {
1332
nbhs_principalE : (@nbhs T _) = principal_filter;
1433
}.
1534

1635
#[short(type="discreteNbhsType")]
1736
HB.structure Definition DiscreteNbhs := {T of Nbhs T & Discrete_ofNbhs T}.
1837

19-
2038
Definition discrete_ent {T} : set (set (T * T)) :=
2139
globally (range (fun x => (x, x))).
2240

23-
(** Note: having the discrete topology does not guarantee the discrete
41+
(** Note: having the discrete topology does not guarantee the discrete
2442
uniformity. Likewise for the discrete metric. Consider [set 1/n | n in R] *)
2543
HB.mixin Record Discrete_ofUniform T of Uniform T := {
2644
uniform_discrete : @entourage T = discrete_ent
2745
}.
2846

29-
Definition discrete_ball {R : numDomainType} {T} (x : T) (eps : R) y : Prop := x = y.
47+
Definition discrete_ball {R : numDomainType} {T} (x : T) (eps : R) y : Prop :=
48+
x = y.
3049

31-
HB.mixin Record Discrete_ofPseudometric {R : numDomainType} T of
50+
HB.mixin Record Discrete_ofPseudometric {R : numDomainType} T of
3251
PseudoMetric R T := {
3352
metric_discrete : @ball R T = @discrete_ball R T
3453
}.
3554

3655
#[short(type="discreteTopologicalType")]
37-
HB.structure Definition DiscreteTopology :=
56+
HB.structure Definition DiscreteTopology :=
3857
{ T of DiscreteNbhs T & Topological T}.
3958

4059
#[short(type="discreteOrderTopologicalType")]
41-
HB.structure Definition DiscreteOrderTopology d :=
60+
HB.structure Definition DiscreteOrderTopology d :=
4261
{ T of Discrete_ofNbhs T & OrderTopological d T}.
4362

4463
#[short(type="pdiscreteTopologicalType")]
45-
HB.structure Definition PointedDiscreteTopology :=
64+
HB.structure Definition PointedDiscreteTopology :=
4665
{ T of DiscreteTopology T & Pointed T}.
4766

4867
#[short(type="pdiscreteOrderTopologicalType")]
49-
HB.structure Definition PointedDiscreteOrderTopology d :=
68+
HB.structure Definition PointedDiscreteOrderTopology d :=
5069
{ T of Discrete_ofNbhs T & OrderTopological d T & Pointed T}.
5170

5271
#[short(type="discreteUniformType")]
53-
HB.structure Definition DiscreteUniform :=
72+
HB.structure Definition DiscreteUniform :=
5473
{ T of Discrete_ofUniform T & Uniform T & Discrete_ofNbhs T}.
5574

5675
#[short(type="discretePseudoMetricType")]
57-
HB.structure Definition DiscretePseudoMetric {R : numDomainType} :=
76+
HB.structure Definition DiscretePseudoMetric {R : numDomainType} :=
5877
{ T of Discrete_ofPseudometric R T & PseudoMetric R T & DiscreteUniform T}.
5978

6079
HB.builders Context T of Discrete_ofNbhs T.
@@ -65,7 +84,8 @@ Proof. rewrite nbhs_principalE; exact: principal_filter_proper. Qed.
6584
Local Lemma principal_nbhs_singleton (p : T) (A : set T) : nbhs p A -> A p.
6685
Proof. by rewrite nbhs_principalE => /principal_filterP. Qed.
6786

68-
Local Lemma principal_nbhs_nbhs (p : T) (A : set T) : nbhs p A -> nbhs p (nbhs^~ A).
87+
Local Lemma principal_nbhs_nbhs (p : T) (A : set T) :
88+
nbhs p A -> nbhs p (nbhs^~ A).
6989
Proof. by move=> ?; rewrite {1}nbhs_principalE; apply/principal_filterP. Qed.
7090

7191
HB.instance Definition _ := @Nbhs_isNbhsTopological.Build T
@@ -101,16 +121,16 @@ Qed.
101121
Local Lemma discrete_entourage_nbhsE : (@nbhs T _) = nbhs_ d.
102122
Proof.
103123
rewrite funeqE => x; rewrite nbhs_principalE eqEsubset; split => U.
104-
move/principal_filterP => ?; exists diagonal; first by move=> ? [w _ <-].
124+
move/principal_filterP => ?; exists diagonal; first by move=> ? [w _ <-].
105125
by move=> z /= /set_mem; rewrite /diagonal /= => <-.
106126
case => w entW wU; apply/principal_filterP; apply: wU; apply/mem_set.
107127
exact: entW.
108128
Qed.
109129

110130
HB.instance Definition _ := @Nbhs_isUniform.Build T
111-
discrete_ent
112-
discrete_entourage_filter
113-
discrete_entourage_diagonal
131+
discrete_ent
132+
discrete_entourage_filter
133+
discrete_entourage_diagonal
114134
discrete_entourage_inv
115135
discrete_entourage_split_ex
116136
discrete_entourage_nbhsE.
@@ -119,12 +139,12 @@ HB.instance Definition _ := @Discrete_ofUniform.Build T erefl.
119139

120140
HB.end.
121141

122-
HB.factory Record DiscretePseudoMetric_ofUniform (R : numDomainType) T of
142+
HB.factory Record DiscretePseudoMetric_ofUniform (R : numDomainType) T of
123143
DiscreteUniform T := {}.
124144

125145
HB.builders Context R T of DiscretePseudoMetric_ofUniform R T.
126146

127-
Local Lemma discrete_ball_center x (eps : R) : 0 < eps ->
147+
Local Lemma discrete_ball_center x (eps : R) : 0 < eps ->
128148
@discrete_ball R T x eps x.
129149
Proof. by []. Qed.
130150

@@ -143,9 +163,9 @@ move=> entP; exists 1 => //= z z12; apply: entP; exists z.1 => //.
143163
by rewrite {2}z12 -surjective_pairing.
144164
Qed.
145165

146-
HB.instance Definition _ :=
147-
@Uniform_isPseudoMetric.Build R T (@discrete_ball R T)
148-
discrete_ball_center discrete_ball_sym discrete_ball_triangle
166+
HB.instance Definition _ :=
167+
@Uniform_isPseudoMetric.Build R T (@discrete_ball R T)
168+
discrete_ball_center discrete_ball_sym discrete_ball_triangle
149169
discrete_entourageE.
150170

151171
Local Lemma discrete_ballE : @ball R T = @discrete_ball R T.
@@ -155,9 +175,8 @@ HB.instance Definition _ := @Discrete_ofPseudometric.Build R T discrete_ballE.
155175

156176
HB.end.
157177

158-
(** we introducing an alias attaching discrete structures for
159-
topology, uniformity, and pseudometric *)
160178
Definition discrete_topology (T : Type) : Type := T.
179+
161180
HB.instance Definition _ (T : choiceType) :=
162181
Choice.copy (discrete_topology T) T.
163182
HB.instance Definition _ (T : pointedType) :=
@@ -166,9 +185,9 @@ HB.instance Definition _ (T : choiceType) :=
166185
hasNbhs.Build (discrete_topology T) principal_filter.
167186
HB.instance Definition _ (T : choiceType) :=
168187
Discrete_ofNbhs.Build (discrete_topology T) erefl.
169-
HB.instance Definition _ (T : choiceType) :=
188+
HB.instance Definition _ (T : choiceType) :=
170189
DiscreteUniform_ofNbhs.Build (discrete_topology T).
171-
HB.instance Definition _ {R : numDomainType} (T : choiceType) :=
190+
HB.instance Definition _ {R : numDomainType} (T : choiceType) :=
172191
@DiscretePseudoMetric_ofUniform.Build R (discrete_topology T).
173192

174193
Section discrete_topology.

0 commit comments

Comments
 (0)