@@ -1407,7 +1407,7 @@ def test_weighted_prgain_majoring(self):
1407
1407
)
1408
1408
1409
1409
# tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3]
1410
- # scaling_facor (P/N) = 7/3
1410
+ # scaling_factor (P/N) = 7/3
1411
1411
# recall_gain = 1 - 7/3 [0/7, 3/4, 7/0] = [1, -3/4, -inf] -> [1, 0, 0]
1412
1412
# precision_gain = 1 - 7/3 [3/7, 0/4, 0/0] = [0, 1, NaN] -> [0, 1, 1]
1413
1413
# heights = [max(0, 1), max(1, 1)] = [1, 1]
@@ -1426,7 +1426,7 @@ def test_weighted_prgain_minoring(self):
1426
1426
)
1427
1427
1428
1428
# tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3]
1429
- # scaling_facor (P/N) = 7/3
1429
+ # scaling_factor (P/N) = 7/3
1430
1430
# recall_gain = 1 - 7/3 [0/7, 3/4, 7/0] = [1, -3/4, -inf] -> [1, 0, 0]
1431
1431
# precision_gain = 1 - 7/3 [3/7, 0/4, 0/0] = [0, 1, NaN] -> [0, 1, 1]
1432
1432
# heights = [min(0, 1), min(1, 1)] = [0, 1]
@@ -1443,7 +1443,7 @@ def test_weighted_prgain_interpolation(self):
1443
1443
)
1444
1444
1445
1445
# tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3]
1446
- # scaling_facor (P/N) = 7/3
1446
+ # scaling_factor (P/N) = 7/3
1447
1447
# recall_gain = 1 - 7/3 [0/7, 3/4, 7/0] = [1, -3/4, -inf] -> [1, 0, 0]
1448
1448
# precision_gain = 1 - 7/3 [3/7, 0/4, 0/0] = [0, 1, NaN] -> [0, 1, 1]
1449
1449
# heights = [(0+1)/2, (1+1)/2] = [0.5, 1]
@@ -1461,7 +1461,7 @@ def test_prgain_interpolation(self):
1461
1461
result = auc_obj (y_true , y_pred )
1462
1462
1463
1463
# tp = [5, 3, 0], fp = [5, 1, 0], fn = [0, 2, 5], tn = [0, 4, 4]
1464
- # scaling_facor (P/N) = 5/5 = 1
1464
+ # scaling_factor (P/N) = 5/5 = 1
1465
1465
# recall_gain = 1 - [0/5, 2/3, 5/0] = [1, 1/3, -inf] -> [1, 1/3, 0]
1466
1466
# precision_gain = 1 - [5/5, 1/3, 0/0] = [1, 1/3, NaN] -> [0, 2/3, 1]
1467
1467
# heights = [(0+2/3)/2, (2/3+1)/2] = [0.333333, 0.833333]
0 commit comments