|
| 1 | +import { AIChatModelCard } from '../types/aiModel'; |
| 2 | + |
| 3 | +const cerebrasModels: AIChatModelCard[] = [ |
| 4 | + { |
| 5 | + abilities: { |
| 6 | + functionCall: true, |
| 7 | + }, |
| 8 | + contextWindowTokens: 32_768, |
| 9 | + description: 'Llama 4 Scout:高性能的 Llama 系列模型,适合需高吞吐与低延迟的场景。', |
| 10 | + displayName: 'Llama 4 Scout', |
| 11 | + id: 'llama-4-scout-17b-16e-instruct', |
| 12 | + pricing: { |
| 13 | + units: [ |
| 14 | + { name: 'textInput', rate: 0.65, strategy: 'fixed', unit: 'millionTokens' }, |
| 15 | + { name: 'textOutput', rate: 0.85, strategy: 'fixed', unit: 'millionTokens' }, |
| 16 | + ], |
| 17 | + }, |
| 18 | + type: 'chat', |
| 19 | + }, |
| 20 | + { |
| 21 | + abilities: { |
| 22 | + functionCall: true, |
| 23 | + }, |
| 24 | + contextWindowTokens: 32_768, |
| 25 | + description: |
| 26 | + 'Llama 4 Maverick:高性能的 Llama 系列模型,适合高级推理、复杂问题解决和指令跟随任务。', |
| 27 | + displayName: 'Llama 4 Maverick', |
| 28 | + id: 'llama-4-maverick-17b-128e-instruct', |
| 29 | + pricing: { |
| 30 | + units: [ |
| 31 | + { name: 'textInput', rate: 0.2, strategy: 'fixed', unit: 'millionTokens' }, |
| 32 | + { name: 'textOutput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' }, |
| 33 | + ], |
| 34 | + }, |
| 35 | + type: 'chat', |
| 36 | + }, |
| 37 | + { |
| 38 | + abilities: { |
| 39 | + functionCall: true, |
| 40 | + }, |
| 41 | + contextWindowTokens: 32_768, |
| 42 | + description: 'Llama 3.1 8B:小体量、低延迟的 Llama 变体,适合轻量在线推理与交互场景。', |
| 43 | + displayName: 'Llama 3.1 8B', |
| 44 | + id: 'llama3.1-8b', |
| 45 | + pricing: { |
| 46 | + units: [ |
| 47 | + { name: 'textInput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' }, |
| 48 | + { name: 'textOutput', rate: 0.1, strategy: 'fixed', unit: 'millionTokens' }, |
| 49 | + ], |
| 50 | + }, |
| 51 | + type: 'chat', |
| 52 | + }, |
| 53 | + { |
| 54 | + abilities: { |
| 55 | + functionCall: true, |
| 56 | + }, |
| 57 | + contextWindowTokens: 131_072, |
| 58 | + description: 'Llama 3.3 70B:中大型 Llama 模型,兼顾推理能力与吞吐。', |
| 59 | + displayName: 'Llama 3.3 70B', |
| 60 | + id: 'llama-3.3-70b', |
| 61 | + pricing: { |
| 62 | + units: [ |
| 63 | + { name: 'textInput', rate: 0.85, strategy: 'fixed', unit: 'millionTokens' }, |
| 64 | + { name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' }, |
| 65 | + ], |
| 66 | + }, |
| 67 | + type: 'chat', |
| 68 | + }, |
| 69 | + { |
| 70 | + abilities: { |
| 71 | + functionCall: true, |
| 72 | + reasoning: true, |
| 73 | + }, |
| 74 | + contextWindowTokens: 131_072, |
| 75 | + displayName: 'GPT OSS 120B', |
| 76 | + enabled: true, |
| 77 | + id: 'gpt-oss-120b', |
| 78 | + pricing: { |
| 79 | + units: [ |
| 80 | + { name: 'textInput', rate: 0.35, strategy: 'fixed', unit: 'millionTokens' }, |
| 81 | + { name: 'textOutput', rate: 0.75, strategy: 'fixed', unit: 'millionTokens' }, |
| 82 | + ], |
| 83 | + }, |
| 84 | + settings: { |
| 85 | + extendParams: ['reasoningEffort'], |
| 86 | + }, |
| 87 | + type: 'chat', |
| 88 | + }, |
| 89 | + { |
| 90 | + abilities: { |
| 91 | + functionCall: true, |
| 92 | + reasoning: true, |
| 93 | + }, |
| 94 | + contextWindowTokens: 131_072, |
| 95 | + description: 'Qwen 3 32B:Qwen 系列在多语言与编码任务上表现优良,适合中等规模生产化使用。', |
| 96 | + displayName: 'Qwen 3 32B', |
| 97 | + id: 'qwen-3-32b', |
| 98 | + pricing: { |
| 99 | + units: [ |
| 100 | + { name: 'textInput', rate: 0.4, strategy: 'fixed', unit: 'millionTokens' }, |
| 101 | + { name: 'textOutput', rate: 0.8, strategy: 'fixed', unit: 'millionTokens' }, |
| 102 | + ], |
| 103 | + }, |
| 104 | + type: 'chat', |
| 105 | + }, |
| 106 | + { |
| 107 | + abilities: { |
| 108 | + functionCall: true, |
| 109 | + }, |
| 110 | + contextWindowTokens: 131_072, |
| 111 | + displayName: 'Qwen 3 235B Instruct', |
| 112 | + id: 'qwen-3-235b-a22b-instruct-2507', |
| 113 | + pricing: { |
| 114 | + units: [ |
| 115 | + { name: 'textInput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' }, |
| 116 | + { name: 'textOutput', rate: 1.2, strategy: 'fixed', unit: 'millionTokens' }, |
| 117 | + ], |
| 118 | + }, |
| 119 | + type: 'chat', |
| 120 | + }, |
| 121 | + { |
| 122 | + abilities: { |
| 123 | + reasoning: true, |
| 124 | + }, |
| 125 | + contextWindowTokens: 131_072, |
| 126 | + displayName: 'Qwen 3 235B Thinking', |
| 127 | + id: 'qwen-3-235b-a22b-thinking-2507', |
| 128 | + pricing: { |
| 129 | + units: [ |
| 130 | + { name: 'textInput', rate: 0.6, strategy: 'fixed', unit: 'millionTokens' }, |
| 131 | + { name: 'textOutput', rate: 2.9, strategy: 'fixed', unit: 'millionTokens' }, |
| 132 | + ], |
| 133 | + }, |
| 134 | + type: 'chat', |
| 135 | + }, |
| 136 | + { |
| 137 | + abilities: { |
| 138 | + functionCall: true, |
| 139 | + }, |
| 140 | + contextWindowTokens: 131_072, |
| 141 | + description: 'Qwen 3 Coder 480B:面向代码生成与复杂编程任务的长上下文模型。', |
| 142 | + displayName: 'Qwen 3 Coder 480B', |
| 143 | + id: 'qwen-3-coder-480b', |
| 144 | + pricing: { |
| 145 | + units: [ |
| 146 | + { name: 'textInput', rate: 2, strategy: 'fixed', unit: 'millionTokens' }, |
| 147 | + { name: 'textOutput', rate: 2, strategy: 'fixed', unit: 'millionTokens' }, |
| 148 | + ], |
| 149 | + }, |
| 150 | + type: 'chat', |
| 151 | + }, |
| 152 | +]; |
| 153 | + |
| 154 | +export const allModels = [...cerebrasModels]; |
| 155 | + |
| 156 | +export default allModels; |
0 commit comments