@@ -207,7 +207,7 @@ def get_user_model():
207207 trust_remote_code = args .trust_remote_code ,
208208 revision = args .revision ,
209209 )
210- tokenizer = AutoTokenizer .from_pretrained (args .model )
210+ tokenizer = AutoTokenizer .from_pretrained (args .model , trust_remote_code = args . trust_remote_code )
211211 if args .approach == 'weight_only' :
212212 user_model = user_model .float ()
213213
@@ -380,7 +380,7 @@ def eval_func(model):
380380 if args .code_generation :
381381 from intel_extension_for_transformers .llm .evaluation .lm_code_eval import evaluate
382382 from transformers import AutoTokenizer
383- tokenizer = AutoTokenizer .from_pretrained (args .model )
383+ tokenizer = AutoTokenizer .from_pretrained (args .model , trust_remote_code = args . trust_remote_code )
384384 results = evaluate (
385385 model = user_model ,
386386 tokenizer = tokenizer ,
@@ -419,7 +419,8 @@ def eval_func(model):
419419 start = time .time ()
420420 results = evaluate (
421421 model = "hf-causal" ,
422- model_args = 'pretrained=' + args .model + ',tokenizer=' + args .model + ',dtype=float32' ,
422+ model_args = 'pretrained=' + args .model + ',tokenizer=' + args .model \
423+ + ',dtype=float32' + ",trust_remote_code=" + str (args .trust_remote_code ),
423424 user_model = user_model ,
424425 batch_size = args .batch_size ,
425426 tasks = args .tasks ,
@@ -429,6 +430,8 @@ def eval_func(model):
429430 for task_name in args .tasks :
430431 if task_name == "wikitext" :
431432 acc = results ["results" ][task_name ]["word_perplexity" ]
433+ elif task_name == "truthfulqa_mc" :
434+ acc = results ["results" ][task_name ]["mc1" ]
432435 else :
433436 acc = results ["results" ][task_name ]["acc" ]
434437 print ("Accuracy: %.5f" % acc )
0 commit comments