Skip to content

hy0523/MTNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[TNNLS2024]Learning Motion and Temporal Cues for Unsupervised Video Object Segmentation

Updates

  • [2025-04-26] The training code is now available.
  • [2024-06-20] Our paper is accepted at TNNLS 2024.
  • [2024-04-16] Initialize the repository, release the test code and the trained model.

Demo

demo1 demo2 demo2

Get Started

Environment

  • python == 3.8.15
  • torch == 1.10.0
  • torchvision == 0.11.0
  • cuda == 11.4
  • opencv == 4.6.0

Datasets

Please download the following datasets:

UVOS datasets:

VSOD datasets:

To quickly reproduce our results, we upload the processed data to Google Drive and Baidu Disk (code: qcbh).

Models

stage model link
pre-train Google Drive, Baidu Disk (code: qcbh)
fine-tuning Google Drive, Baidu Disk (code: qcbh)

To reproduct the results we reported in paper, please download the corresponding models and run test script.

Training

Distributed Training.

sh train_m.sh

Single-GPU Training.

sh train_s.sh

Testing

Download the trained MTNet, and placing it in the ./saves.

python test.py [test_model] [task_name] [test_dataset] [output_dir]

Testing for UVOS task:

python test.py --test_model ./saves/mtnet.pth --task_name UVOS --test_dataset DAVIS16 --output_dir output

Testing for VSOD task:

python test.py --test_model ./saves/mtnet.pth --task_name VSOD --test_dataset DAVIS16 --output_dir output

Results

Google Drive

Baidu Disk (code: qcbh)

Evaluation

Evaluation for UVOS results:

python test_scripts/test_for_davis.py --gt_path ../data/DAVIS16/val/mask --result_path output/MTNet/UVOS/DAVIS16/

Evaluation for VSOD results:

python test_scripts/test_vsod/main.py --method MTNet --dataset DAVIS16 --gt_dir test_scripts/test_vsod/gt/ --pred_dir test_scripts/test_vsod/results/

Visualization

Specify the dataset in visualize.py, then run:

python visualize.py

References

This repository owes its existence to the exceptional contributions of other projects:

Many thanks to their invaluable contributions.

BibTeX

@article{zhuge2024learning,
  title={Learning Motion and Temporal Cues for Unsupervised Video Object Segmentation},
  author={Zhuge, Yunzhi and Gu, Hongyu and Zhang, Lu and Qi, Jinqing and Lu, Huchuan},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2024},
  publisher={IEEE}
}

About

Learning Motion and Temporal Cues for Unsupervised Video Object Segmentation[TNNLS2024]

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published