Skip to content

Commit 249189d

Browse files
authored
Prepare for 3.3.2 (#3249)
1 parent 6b6e30a commit 249189d

22 files changed

+40
-40
lines changed

Cargo.lock

Lines changed: 8 additions & 8 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

Cargo.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ default-members = [
2121
resolver = "2"
2222

2323
[workspace.package]
24-
version = "3.3.1-dev0"
24+
version = "3.3.2-dev0"
2525
edition = "2021"
2626
authors = ["Olivier Dehaene"]
2727
homepage = "https://github.com/huggingface/text-generation-inference"

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,7 @@ model=HuggingFaceH4/zephyr-7b-beta
8484
volume=$PWD/data
8585

8686
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
87-
ghcr.io/huggingface/text-generation-inference:3.3.1 --model-id $model
87+
ghcr.io/huggingface/text-generation-inference:3.3.2 --model-id $model
8888
```
8989

9090
And then you can make requests like
@@ -121,7 +121,7 @@ curl localhost:8080/v1/chat/completions \
121121

122122
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
123123

124-
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.1-rocm --model-id $model` instead of the command above.
124+
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.2-rocm --model-id $model` instead of the command above.
125125

126126
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
127127
```
@@ -152,7 +152,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
152152
token=<your cli READ token>
153153

154154
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
155-
ghcr.io/huggingface/text-generation-inference:3.3.1 --model-id $model
155+
ghcr.io/huggingface/text-generation-inference:3.3.2 --model-id $model
156156
```
157157

158158
### A note on Shared Memory (shm)

docs/openapi.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
"name": "Apache 2.0",
1111
"url": "https://www.apache.org/licenses/LICENSE-2.0"
1212
},
13-
"version": "3.3.1-dev0"
13+
"version": "3.3.2-dev0"
1414
},
1515
"paths": {
1616
"/": {

docs/source/backends/gaudi.mdx

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ hf_token=YOUR_HF_ACCESS_TOKEN
2020

2121
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
2222
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
23-
ghcr.io/huggingface/text-generation-inference:3.3.1-gaudi \
23+
ghcr.io/huggingface/text-generation-inference:3.3.2-gaudi \
2424
--model-id $model
2525
```
2626

@@ -52,7 +52,7 @@ hf_token=YOUR_ACCESS_TOKEN
5252

5353
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
5454
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
55-
ghcr.io/huggingface/text-generation-inference:3.3.1-gaudi \
55+
ghcr.io/huggingface/text-generation-inference:3.3.2-gaudi \
5656
--model-id $model
5757
<text-generation-inference-launcher-arguments>
5858
```
@@ -115,7 +115,7 @@ docker run -p 8080:80 \
115115
-e BATCH_BUCKET_SIZE=256 \
116116
-e PREFILL_BATCH_BUCKET_SIZE=4 \
117117
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
118-
ghcr.io/huggingface/text-generation-inference:3.3.1-gaudi \
118+
ghcr.io/huggingface/text-generation-inference:3.3.2-gaudi \
119119
--model-id $model \
120120
--sharded true --num-shard 8 \
121121
--max-input-tokens 1024 --max-total-tokens 2048 \
@@ -141,7 +141,7 @@ docker run -p 8080:80 \
141141
-v $volume:/data \
142142
-e PREFILL_BATCH_BUCKET_SIZE=1 \
143143
-e BATCH_BUCKET_SIZE=1 \
144-
ghcr.io/huggingface/text-generation-inference:3.3.1-gaudi \
144+
ghcr.io/huggingface/text-generation-inference:3.3.2-gaudi \
145145
--model-id $model \
146146
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
147147
--max-total-tokens 8192 --max-batch-size 4
@@ -208,7 +208,7 @@ docker run --runtime=habana --ipc=host --cap-add=sys_nice \
208208
-e PROF_PATH=/tmp/hpu_profile \
209209
-e PROF_RANKS=0 \
210210
-e PROF_RECORD_SHAPES=True \
211-
ghcr.io/huggingface/text-generation-inference:3.3.1-gaudi \
211+
ghcr.io/huggingface/text-generation-inference:3.3.2-gaudi \
212212
--model-id $model
213213
```
214214

docs/source/backends/neuron.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ deployment instructions in the model card:
3131
The service is launched simply by running the text-generation-inference container with two sets of parameters:
3232

3333
```
34-
docker run <system_parameters> ghcr.io/huggingface/text-generation-inference:3.3.1-neuron <service_parameters>
34+
docker run <system_parameters> ghcr.io/huggingface/text-generation-inference:3.3.2-neuron <service_parameters>
3535
```
3636

3737
- system parameters are used to map ports, volumes and devices between the host and the service,

docs/source/basic_tutorials/gated_model_access.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,6 @@ docker run --gpus all \
1919
--shm-size 1g \
2020
-e HF_TOKEN=$token \
2121
-p 8080:80 \
22-
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.1 \
22+
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.2 \
2323
--model-id $model
2424
```

docs/source/conceptual/quantization.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -19,15 +19,15 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
1919
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
2020

2121
```bash
22-
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.1 --model-id $model --quantize bitsandbytes
22+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.2 --model-id $model --quantize bitsandbytes
2323
```
2424

2525
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
2626

2727
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
2828

2929
```bash
30-
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.1 --model-id $model --quantize bitsandbytes-nf4
30+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.2 --model-id $model --quantize bitsandbytes-nf4
3131
```
3232

3333
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
@@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
4848
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
4949

5050
```bash
51-
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.1 --model-id $model --quantize gptq
51+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.3.2 --model-id $model --quantize gptq
5252
```
5353

5454
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.

docs/source/installation_amd.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
1111
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
1212
--device=/dev/kfd --device=/dev/dri --group-add video \
1313
--ipc=host --shm-size 256g --net host -v $volume:/data \
14-
ghcr.io/huggingface/text-generation-inference:3.3.1-rocm \
14+
ghcr.io/huggingface/text-generation-inference:3.3.2-rocm \
1515
--model-id $model
1616
```
1717

docs/source/installation_intel.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
1212
docker run --rm --privileged --cap-add=sys_nice \
1313
--device=/dev/dri \
1414
--ipc=host --shm-size 1g --net host -v $volume:/data \
15-
ghcr.io/huggingface/text-generation-inference:3.3.1-intel-xpu \
15+
ghcr.io/huggingface/text-generation-inference:3.3.2-intel-xpu \
1616
--model-id $model --cuda-graphs 0
1717
```
1818

@@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
2929
docker run --rm --privileged --cap-add=sys_nice \
3030
--device=/dev/dri \
3131
--ipc=host --shm-size 1g --net host -v $volume:/data \
32-
ghcr.io/huggingface/text-generation-inference:3.3.1-intel-cpu \
32+
ghcr.io/huggingface/text-generation-inference:3.3.2-intel-cpu \
3333
--model-id $model --cuda-graphs 0
3434
```
3535

0 commit comments

Comments
 (0)