|
| 1 | +/************************************************************************ |
| 2 | + ************************************************************************ |
| 3 | + FAUST compiler |
| 4 | + Copyright (C) 2025 GRAME, Centre National de Creation Musicale |
| 5 | + --------------------------------------------------------------------- |
| 6 | + This program is free software; you can redistribute it and/or modify |
| 7 | + it under the terms of the GNU Lesser General Public License as published by |
| 8 | + the Free Software Foundation; either version 2.1 of the License, or |
| 9 | + (at your option) any later version. |
| 10 | +
|
| 11 | + This program is distributed in the hope that it will be useful, |
| 12 | + but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | + GNU Lesser General Public License for more details. |
| 15 | +
|
| 16 | + You should have received a copy of the GNU Lesser General Public License |
| 17 | + along with this program; if not, write to the Free Software |
| 18 | + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 19 | + ************************************************************************ |
| 20 | + ************************************************************************/ |
| 21 | + |
| 22 | +#include "signalFIRCompiler.hh" |
| 23 | +#include "compatibility.hh" // For basename, pathToContent |
| 24 | +#include "xtended.hh" |
| 25 | + |
| 26 | +#include <iostream> |
| 27 | +#include <string> |
| 28 | +#include <vector> |
| 29 | + |
| 30 | +using namespace std; |
| 31 | + |
| 32 | +//-------------------------SignalFIRCompiler------------------------------- |
| 33 | +// |
| 34 | +// SignalFIRCompiler is designed to directly compile signals. The compilation process is divided |
| 35 | +// into two main stages: |
| 36 | +// |
| 37 | +// 1) Preparation Stage (SignalBuilder). The SignalBuilder class traverses all output signal trees |
| 38 | +// to: |
| 39 | +// - Allocate delay lines (both integer and real types) for sample-accurate delays and |
| 40 | +// recursive constructs. |
| 41 | +// - Allocate tables (both integer and real types) required for table-based signal generation. |
| 42 | +// - Collect and configure input and output control signals (e.g., sliders, buttons, |
| 43 | +// bargraphs). |
| 44 | +// |
| 45 | +// 2) Compilation Stage (SignalFIRCompiler). The SignalFIRCompiler class: |
| 46 | +// - Traverses all output signal trees. |
| 47 | +// - Compile the value of each output signal sample by recursively compiling the expression |
| 48 | +// tree. |
| 49 | +// - Uses a value stack to manage intermediate compilaiton results. |
| 50 | +// |
| 51 | +// After SignalBuilder has prepared the signal trees, the tables are precompiled once during |
| 52 | +// the initialization phase via the `initTables` method. |
| 53 | +// |
| 54 | +// `compile()` iterates over every output in the linked list `fOutputSig`. |
| 55 | +// * For each signal it: |
| 56 | +// * 1. Recursively traverses the expression tree with `self()`. |
| 57 | +// * 2. Retrieves the resulting FIR value from `fValueStack`. |
| 58 | +// * 3. Stores that value in a fresh stack variable via `StoreStackVar`. |
| 59 | +// |
| 60 | +//---------------------------------------------------------------------- |
| 61 | + |
| 62 | +void SignalFIRCompiler::compile() |
| 63 | +{ |
| 64 | + Tree output_list = fOutputSig; |
| 65 | + fVisited.clear(); // Clear visited for each top-level signal evaluation per sample |
| 66 | + |
| 67 | + while (!isNil(output_list)) { |
| 68 | + // Compile each output |
| 69 | + Tree out_sig = hd(output_list); |
| 70 | + self(out_sig); |
| 71 | + // Get compiled value and sotre in the output |
| 72 | + ValueInst* res = popRes(); |
| 73 | + writeStatement(out_sig, IB::genStoreStackVar( |
| 74 | + gGlobal->getFreshID("output"), |
| 75 | + genCastedOutput(getCertifiedSigType(out_sig)->nature(), res))); |
| 76 | + // Compile next output |
| 77 | + output_list = tl(output_list); |
| 78 | + } |
| 79 | +} |
| 80 | + |
| 81 | +/** |
| 82 | + * @brief Visits a signal tree node and recursively compiles its value. |
| 83 | + * |
| 84 | + * This method implements the core compiler logic for the |
| 85 | + * signal graph. It uses a recursive traversal to process each node type, |
| 86 | + * compiles its sub-expressions, and produce the resulting FIR value. The |
| 87 | + * intermediate results are stored on a value stack (`fValueStack`). |
| 88 | + * |
| 89 | + * The method supports a wide variety of Faust signal constructs, including: |
| 90 | + * - Constants (integer, real) |
| 91 | + * - Inputs and outputs |
| 92 | + * - Delay lines and feedback structures |
| 93 | + * - Control structures (sliders, buttons, bargraphs) |
| 94 | + * - Mathematical operations (binary operators, conditional expressions) |
| 95 | + * - Table-based operations (read/write table) |
| 96 | + * - Recursive signals and projections |
| 97 | + * |
| 98 | + * Key implementation notes: |
| 99 | + * - For each recognized node type, it performs the appropriate compilation logic |
| 100 | + * and pushes the result onto the value stack. |
| 101 | + * - For recursive signals (e.g., projections), it uses the `fVisited` map to |
| 102 | + * detect cycles and avoid infinite recursion. |
| 103 | + * - It handles the compilation of user interface controls by compilation loding values |
| 104 | + * from `fInputControls` and updating `fOutputControls`. |
| 105 | + * - For unimplemented or unrecognized nodes, it triggers an assertion failure |
| 106 | + * to ensure correctness. |
| 107 | + * |
| 108 | + * @param sig The signal tree node to compile. |
| 109 | + */ |
| 110 | +void SignalFIRCompiler::visit(Tree sig) |
| 111 | +{ |
| 112 | + int i_val; |
| 113 | + int64_t i64_val; |
| 114 | + double r_val; |
| 115 | + Tree size_tree, gen_tree, wi_tree, ws_tree, tbl_tree, ri_tree; |
| 116 | + Tree c_tree, x_tree, y_tree, z_tree; |
| 117 | + Tree label_tree, type_tree, name_tree, file_tree, sf_tree, sel; |
| 118 | + Tree rec_vars, rec_exprs; |
| 119 | + int opt_op; |
| 120 | + int proj_idx; |
| 121 | + |
| 122 | + /* |
| 123 | + if (global::isDebug("SIG_RENDERER")) { |
| 124 | + std::cout << "SignalFIRCompiler : " << ppsig(sig, 64) << std::endl; |
| 125 | + std::cout << "SignalFIRCompiler : fIOTA " << fIOTA << std::endl; |
| 126 | + } |
| 127 | + */ |
| 128 | + |
| 129 | + if (xtended* xt = (xtended*)getUserData(sig)) { |
| 130 | + list<ValueInst*> args; |
| 131 | + vector<Typed::VarType> atypes; |
| 132 | + // Compile all arguments then compile the function call |
| 133 | + for (Tree b : sig->branches()) { |
| 134 | + self(b); |
| 135 | + args.push_back(popRes()); |
| 136 | + atypes.push_back(convert2FIRType(getCertifiedSigType(b)->nature())); |
| 137 | + } |
| 138 | + |
| 139 | + // ValueInst* res = xt->compute(args); |
| 140 | + |
| 141 | + // HACK: for 'min/max' res may actually be of type kInt |
| 142 | + int rtype = getCertifiedSigType(sig)->nature(); |
| 143 | + |
| 144 | + // Compile the function declaration |
| 145 | + fGlobalBlock->pushBackInst(IB::genFunction(xt->name(), convert2FIRType(rtype), atypes)); |
| 146 | + // pushRes((rtype == kInt) ? Node(int(res.getDouble())) : res); |
| 147 | + // Compile the function call |
| 148 | + pushRes(IB::genFunCallInst(xt->name(), args)); |
| 149 | + |
| 150 | + } else if (isSigInt(sig, &i_val)) { |
| 151 | + pushRes(IB::genInt32NumInst(i_val)); |
| 152 | + } else if (isSigInt64(sig, &i64_val)) { |
| 153 | + pushRes(IB::genInt32NumInst(i64_val)); |
| 154 | + } else if (isSigReal(sig, &r_val)) { |
| 155 | + pushRes(IB::genRealNumInst(itfloat(), r_val)); |
| 156 | + } else if (isSigInput(sig, &i_val)) { |
| 157 | + // IB::genLoadVar("in" + std::to_string(i_val), Address::kFunArgs); |
| 158 | + // pushRes(fInputs[i_val][fSample]); |
| 159 | + pushRes(IB::genLoadStackVar(gGlobal->getFreshID("input"))); |
| 160 | + } else if (isSigOutput(sig, &i_val, x_tree)) { |
| 161 | + self(x_tree); // Evaluate the expression connected to the output |
| 162 | + } else if (isSigDelay1(sig, x_tree)) { |
| 163 | + self(x_tree); |
| 164 | + ValueInst* v1 = popRes(); |
| 165 | + ValueInst* one = IB::genInt32NumInst(1); |
| 166 | + pushRes(writeReadDelay(x_tree, v1, one)); |
| 167 | + |
| 168 | + } else if (isSigDelay(sig, x_tree, y_tree)) { |
| 169 | + if (isZeroDelay(y_tree)) { |
| 170 | + self(x_tree); |
| 171 | + } else { |
| 172 | + self(x_tree); |
| 173 | + ValueInst* v1 = popRes(); |
| 174 | + self(y_tree); |
| 175 | + ValueInst* v2 = popRes(); |
| 176 | + pushRes(writeReadDelay(x_tree, v1, v2)); |
| 177 | + } |
| 178 | + } else if (isSigSelect2(sig, sel, x_tree, y_tree)) { |
| 179 | + // Interpret the condition and both branches |
| 180 | + self(sel); |
| 181 | + ValueInst* sel_val = popRes(); |
| 182 | + self(x_tree); |
| 183 | + ValueInst* x_val = popRes(); |
| 184 | + self(y_tree); |
| 185 | + ValueInst* y_val = popRes(); |
| 186 | + // Inverted |
| 187 | + pushRes(IB::genSelect2Inst(sel_val, y_val, x_val)); |
| 188 | + } else if (isSigPrefix(sig, x_tree, y_tree)) { |
| 189 | + /* |
| 190 | + // TODO |
| 191 | + self(y_tree); |
| 192 | + if (fIOTA == 0) { |
| 193 | + self(x_tree); |
| 194 | + } |
| 195 | + */ |
| 196 | + self(y_tree); |
| 197 | + } else if (isSigBinOp(sig, &opt_op, x_tree, y_tree)) { |
| 198 | + self(x_tree); |
| 199 | + ValueInst* v1 = popRes(); |
| 200 | + self(y_tree); |
| 201 | + ValueInst* v2 = popRes(); |
| 202 | + if ((opt_op == kMul) && isMinusOne(x_tree)) { |
| 203 | + pushRes(IB::genMinusInst(v2)); |
| 204 | + } else if ((opt_op == kMul) && isMinusOne(y_tree)) { |
| 205 | + pushRes(IB::genMinusInst(v1)); |
| 206 | + } else { |
| 207 | + pushRes(IB::genBinopInst(opt_op, v1, v2)); |
| 208 | + } |
| 209 | + } else if (isSigFConst(sig, type_tree, name_tree, file_tree)) { |
| 210 | + // Special case for SR constant |
| 211 | + if (string(tree2str(name_tree)) == "fSamplingFreq") { |
| 212 | + pushRes(IB::genLoadStructVar("fSamplerate")); |
| 213 | + } else { |
| 214 | + // TODO |
| 215 | + faustassert(false); |
| 216 | + pushRes(IB::genTypedZero(itfloat())); |
| 217 | + } |
| 218 | + } else if (isSigWRTbl(sig, size_tree, gen_tree, wi_tree, ws_tree)) { |
| 219 | + if (isNil(wi_tree)) { |
| 220 | + // Nothing |
| 221 | + } else { |
| 222 | + self(wi_tree); |
| 223 | + ValueInst* write_idx = popRes(); |
| 224 | + self(ws_tree); |
| 225 | + ValueInst* val = popRes(); |
| 226 | + writeTable(sig, write_idx, val); |
| 227 | + } |
| 228 | + } else if (isSigRDTbl(sig, tbl_tree, ri_tree)) { |
| 229 | + // Compiles table |
| 230 | + self(tbl_tree); |
| 231 | + // Then compile the access |
| 232 | + self(ri_tree); |
| 233 | + ValueInst* read_idx = popRes(); |
| 234 | + pushRes(readTable(tbl_tree, read_idx)); |
| 235 | + |
| 236 | + } else if (isSigGen(sig, x_tree)) { |
| 237 | + if (fVisitGen) { |
| 238 | + self(x_tree); |
| 239 | + } else { |
| 240 | + pushRes(IB::genTypedZero(itfloat())); |
| 241 | + } |
| 242 | + } else if (isSigWaveform(sig)) { |
| 243 | + // Modulo based access in the waveform |
| 244 | + // int size = sig->arity(); |
| 245 | + // int index = fIOTA % size; |
| 246 | + // self(sig->branch(index)); |
| 247 | + // TODO |
| 248 | + self(sig->branch(0)); |
| 249 | + |
| 250 | + } else if (isProj(sig, &proj_idx, x_tree) && isRec(x_tree, rec_vars, rec_exprs)) { |
| 251 | + // First visit of the recursive signal |
| 252 | + if (fVisited.find(sig) == fVisited.end()) { |
| 253 | + faustassert(isRec(x_tree, rec_vars, rec_exprs)); |
| 254 | + fVisited[sig]++; |
| 255 | + // Render the actual projection |
| 256 | + self(nth(rec_exprs, proj_idx)); |
| 257 | + ValueInst* res = popRes(); |
| 258 | + /* |
| 259 | + if (global::isDebug("SIG_RENDERER")) { |
| 260 | + std::cout << "Proj : " << res << "\n"; |
| 261 | + } |
| 262 | + */ |
| 263 | + ValueInst* zero = IB::genInt32NumInst(0); |
| 264 | + pushRes(writeReadDelay(sig, res, zero)); |
| 265 | + |
| 266 | + } else { |
| 267 | + /* |
| 268 | + if (global::isDebug("SIG_RENDERER")) { |
| 269 | + std::cout << "SignalFIRCompiler : next visit of the recursive signal\n"; |
| 270 | + } |
| 271 | + */ |
| 272 | + ValueInst* zero = IB::genInt32NumInst(0); |
| 273 | + pushRes(readDelay(sig, zero)); |
| 274 | + } |
| 275 | + } else if (isSigIntCast(sig, x_tree)) { |
| 276 | + self(x_tree); |
| 277 | + ValueInst* cur = popRes(); |
| 278 | + pushRes(IB::genCastInt32Inst(cur)); |
| 279 | + } else if (isSigBitCast(sig, x_tree)) { |
| 280 | + // Bitcast is complex. For a simple renderer, it might be an identity if types are |
| 281 | + // "close enough" or a reinterpretation of bits (e.g., float bits as int). This renderer |
| 282 | + // doesn't have type info readily on Node to do a true bitcast. Assuming it's a numeric |
| 283 | + // pass-through for now. |
| 284 | + self(x_tree); |
| 285 | + } else if (isSigFloatCast(sig, x_tree)) { |
| 286 | + self(x_tree); |
| 287 | + ValueInst* cur = popRes(); |
| 288 | + pushRes(IB::genCastInst(cur, IB::genBasicTyped(itfloat()))); |
| 289 | + } else if (isSigButton(sig, label_tree)) { |
| 290 | + pushRes(fInputControls[sig].getValue()); |
| 291 | + } else if (isSigCheckbox(sig, label_tree)) { |
| 292 | + pushRes(fInputControls[sig].getValue()); |
| 293 | + } else if (isSigVSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) { |
| 294 | + pushRes(fInputControls[sig].getValue()); |
| 295 | + } else if (isSigHSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) { |
| 296 | + pushRes(fInputControls[sig].getValue()); |
| 297 | + } else if (isSigNumEntry(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) { |
| 298 | + pushRes(fInputControls[sig].getValue()); |
| 299 | + } else if (isSigVBargraph(sig, label_tree, x_tree, y_tree, z_tree)) { |
| 300 | + self(z_tree); |
| 301 | + ValueInst* val = topRes(); |
| 302 | + writeStatement(z_tree, fOutputControls[sig].setValue(val)); |
| 303 | + } else if (isSigHBargraph(sig, label_tree, x_tree, y_tree, z_tree)) { |
| 304 | + self(z_tree); |
| 305 | + ValueInst* val = topRes(); |
| 306 | + writeStatement(z_tree, fOutputControls[sig].setValue(val)); |
| 307 | + } else if (isSigSoundfile(sig, label_tree)) { |
| 308 | + // TODO: Implement soundfile reading. Requires state management for file handlers, |
| 309 | + // position, etc. |
| 310 | + pushRes(IB::genTypedZero(itfloat())); |
| 311 | + } else if (isSigSoundfileLength(sig, sf_tree, x_tree)) { |
| 312 | + // TODO |
| 313 | + self(sf_tree); |
| 314 | + popRes(); |
| 315 | + self(x_tree); |
| 316 | + popRes(); |
| 317 | + pushRes(IB::genTypedZero(itfloat())); |
| 318 | + } else if (isSigSoundfileRate(sig, sf_tree, x_tree)) { |
| 319 | + // TODO |
| 320 | + self(sf_tree); |
| 321 | + popRes(); |
| 322 | + self(x_tree); |
| 323 | + popRes(); |
| 324 | + pushRes(IB::genTypedZero(itfloat())); |
| 325 | + } else if (isSigSoundfileBuffer(sig, sf_tree, x_tree, y_tree, z_tree)) { |
| 326 | + // TODO |
| 327 | + self(sf_tree); |
| 328 | + popRes(); |
| 329 | + self(x_tree); |
| 330 | + popRes(); |
| 331 | + self(y_tree); |
| 332 | + popRes(); |
| 333 | + self(z_tree); |
| 334 | + popRes(); |
| 335 | + pushRes(IB::genTypedZero(itfloat())); |
| 336 | + } else if (isSigAttach(sig, x_tree, y_tree)) { |
| 337 | + // Interpret second arg then drop it |
| 338 | + self(y_tree); |
| 339 | + popRes(); |
| 340 | + // And return the first one |
| 341 | + self(x_tree); |
| 342 | + } else if (isSigEnable(sig, x_tree, y_tree)) { // x_tree is condition, y_tree is signal |
| 343 | + self(x_tree); |
| 344 | + Node enable = popRes(); |
| 345 | + if (enable.getInt() != 0) { |
| 346 | + self(y_tree); |
| 347 | + } else { |
| 348 | + pushRes(IB::genTypedZero(itfloat())); |
| 349 | + } |
| 350 | + } else if (isSigControl(sig, x_tree, y_tree)) { // x_tree is name, y_tree is signal |
| 351 | + self(y_tree); |
| 352 | + } else { |
| 353 | + // Default case and recursion |
| 354 | + SignalVisitor::visit(sig); |
| 355 | + } |
| 356 | +} |
| 357 | + |
| 358 | +// External API |
0 commit comments