1616def load_table_dataframe (client , table_id ):
1717
1818 # [START bigquery_load_table_dataframe]
19- from google . cloud import bigquery
19+ import datetime
2020
21+ from google .cloud import bigquery
2122 import pandas
23+ import pytz
2224
2325 # TODO(developer): Construct a BigQuery client object.
2426 # client = bigquery.Client()
@@ -27,16 +29,54 @@ def load_table_dataframe(client, table_id):
2729 # table_id = "your-project.your_dataset.your_table_name"
2830
2931 records = [
30- {"title" : u"The Meaning of Life" , "release_year" : 1983 },
31- {"title" : u"Monty Python and the Holy Grail" , "release_year" : 1975 },
32- {"title" : u"Life of Brian" , "release_year" : 1979 },
33- {"title" : u"And Now for Something Completely Different" , "release_year" : 1971 },
32+ {
33+ "title" : u"The Meaning of Life" ,
34+ "release_year" : 1983 ,
35+ "length_minutes" : 112.5 ,
36+ "release_date" : datetime .datetime (
37+ 1983 , 5 , 9 , 13 , 0 , 0 , tzinfo = pytz .timezone ("Europe/Paris" )
38+ ),
39+ "dvd_release" : datetime .datetime (2002 , 1 , 22 , 7 , 0 , 0 ),
40+ },
41+ {
42+ "title" : u"Monty Python and the Holy Grail" ,
43+ "release_year" : 1975 ,
44+ "length_minutes" : 91.5 ,
45+ "release_date" : datetime .datetime (
46+ 1975 , 4 , 9 , 23 , 59 , 2 , tzinfo = pytz .timezone ("Europe/London" )
47+ ),
48+ "dvd_release" : datetime .datetime (2002 , 7 , 16 , 9 , 0 , 0 ),
49+ },
50+ {
51+ "title" : u"Life of Brian" ,
52+ "release_year" : 1979 ,
53+ "length_minutes" : 94.25 ,
54+ "release_date" : datetime .datetime (
55+ 1979 , 8 , 17 , 23 , 59 , 5 , tzinfo = pytz .timezone ("America/New_York" )
56+ ),
57+ "dvd_release" : datetime .datetime (2008 , 1 , 14 , 8 , 0 , 0 ),
58+ },
59+ {
60+ "title" : u"And Now for Something Completely Different" ,
61+ "release_year" : 1971 ,
62+ "length_minutes" : 88.0 ,
63+ "release_date" : datetime .datetime (
64+ 1971 , 9 , 28 , 23 , 59 , 7 , tzinfo = pytz .timezone ("Europe/London" )
65+ ),
66+ "dvd_release" : datetime .datetime (2003 , 10 , 22 , 10 , 0 , 0 ),
67+ },
3468 ]
3569 dataframe = pandas .DataFrame (
3670 records ,
3771 # In the loaded table, the column order reflects the order of the
3872 # columns in the DataFrame.
39- columns = ["title" , "release_year" ],
73+ columns = [
74+ "title" ,
75+ "release_year" ,
76+ "length_minutes" ,
77+ "release_date" ,
78+ "dvd_release" ,
79+ ],
4080 # Optionally, set a named index, which can also be written to the
4181 # BigQuery table.
4282 index = pandas .Index (
0 commit comments