|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "id": "c8cEHaZVJXsU" |
| 7 | + }, |
| 8 | + "source": [ |
| 9 | + "[](https://colab.research.google.com/github/google/vizier/blob/main/docs/guides/developer/converters.ipynb)\n", |
| 10 | + "\n", |
| 11 | + "# Converters\n", |
| 12 | + "This documentation demonstrates how to use converters for representing PyVizier objects as NumPy arrays and vice-versa." |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "metadata": { |
| 18 | + "id": "glNyultvKLVg" |
| 19 | + }, |
| 20 | + "source": [ |
| 21 | + "## Installation and reference imports" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": null, |
| 27 | + "metadata": { |
| 28 | + "id": "plR-NKqFJOma" |
| 29 | + }, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "!pip install google-vizier" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": null, |
| 38 | + "metadata": { |
| 39 | + "id": "x1BGr_ZvKQoK" |
| 40 | + }, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "from vizier import pyvizier as vz\n", |
| 44 | + "from vizier.pyvizier import converters" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "markdown", |
| 49 | + "metadata": { |
| 50 | + "id": "8Uhzgb5yYvkT" |
| 51 | + }, |
| 52 | + "source": [ |
| 53 | + "Suppose we had a problem statement and some trials associated to the study." |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": null, |
| 59 | + "metadata": { |
| 60 | + "id": "bHm5beYNMXOF" |
| 61 | + }, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "# Setup search space\n", |
| 65 | + "search_space = vz.SearchSpace()\n", |
| 66 | + "root = search_space.root\n", |
| 67 | + "root.add_float_param(name='double', min_value=0.0, max_value=1.0)\n", |
| 68 | + "root.add_int_param(name='int', min_value=1, max_value=10)\n", |
| 69 | + "root.add_discrete_param(name='discrete', feasible_values=[0.1, 0.3, 0.5])\n", |
| 70 | + "root.add_categorical_param(name='categorical', feasible_values=['a', 'b', 'c'])\n", |
| 71 | + "\n", |
| 72 | + "# Setup metric configurations\n", |
| 73 | + "m1 = vz.MetricInformation(name='m1', goal=vz.ObjectiveMetricGoal.MAXIMIZE)\n", |
| 74 | + "m2 = vz.MetricInformation(name='m2', goal=vz.ObjectiveMetricGoal.MINIMIZE)\n", |
| 75 | + "\n", |
| 76 | + "# Final problem\n", |
| 77 | + "problem = vz.ProblemStatement(search_space, metric_information=[m1, m2])\n", |
| 78 | + "\n", |
| 79 | + "# Example trials\n", |
| 80 | + "trial1 = vz.Trial(\n", |
| 81 | + " parameters={'double': 0.6, 'int': 2, 'discrete': 0.1, 'categorical': 'a'},\n", |
| 82 | + " final_measurement=vz.Measurement(metrics={'m1': 0.1, 'm2': 0.2}),\n", |
| 83 | + ")\n", |
| 84 | + "trial2 = vz.Trial(\n", |
| 85 | + " parameters={'double': 0.1, 'int': 6, 'discrete': 0.3, 'categorical': 'b'},\n", |
| 86 | + " final_measurement=vz.Measurement(metrics={'m1': -1.0, 'm2': 0.8}),\n", |
| 87 | + ")" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "markdown", |
| 92 | + "metadata": { |
| 93 | + "id": "-xcnx2LQKes_" |
| 94 | + }, |
| 95 | + "source": [ |
| 96 | + "## Quick Start\n", |
| 97 | + "To use numerical models, both our `x` (parameters) and `y` (metrics) need to be formatted as numpy arrays. We can directly do so with `TrialToArrayConverter`:" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "metadata": { |
| 104 | + "id": "CONUnh92Yma3" |
| 105 | + }, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "t2a_converter = converters.TrialToArrayConverter.from_study_config(problem)\n", |
| 109 | + "xs, ys = t2a_converter.to_xy([trial1, trial2])" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "metadata": { |
| 115 | + "id": "IocslOsLa8_i" |
| 116 | + }, |
| 117 | + "source": [ |
| 118 | + "We can also convert the `xs` back into PyVizier `ParameterDict`s:" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "code", |
| 123 | + "execution_count": null, |
| 124 | + "metadata": { |
| 125 | + "id": "w4o0gM0KaPw3" |
| 126 | + }, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "t2a_converter.to_parameters(xs)" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "metadata": { |
| 135 | + "id": "MOXYX_oAYm29" |
| 136 | + }, |
| 137 | + "source": [ |
| 138 | + "Behind the scenes, the `TrialToArrayConverter` actually uses a `DefaultTrialConverter` which first converts both trial parameters and metrics into `dict[str, np.ndarray]` and then concatenates the arrays together." |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "metadata": { |
| 145 | + "id": "qiU_rMjfK45Q" |
| 146 | + }, |
| 147 | + "outputs": [], |
| 148 | + "source": [ |
| 149 | + "converter = converters.DefaultTrialConverter.from_study_config(problem)\n", |
| 150 | + "xs_dict, ys_dict = converter.to_xy([trial1, trial2])" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "markdown", |
| 155 | + "metadata": { |
| 156 | + "id": "UlT0t5KDi1OO" |
| 157 | + }, |
| 158 | + "source": [ |
| 159 | + "Trials can be recovered too:" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": { |
| 166 | + "id": "wrgpY0ANi73O" |
| 167 | + }, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "original_trials = converter.to_trials(xs_dict, ys_dict)" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "markdown", |
| 175 | + "metadata": { |
| 176 | + "id": "dyjiYSXmddoN" |
| 177 | + }, |
| 178 | + "source": [ |
| 179 | + "## Customization\n", |
| 180 | + "There are multiple ways to convert parameters of specific types. For example,\n", |
| 181 | + "some common methods to convert the `'categorical'` parameter (with feasible\n", |
| 182 | + "values `['a', 'b', 'c']`) can be:\n", |
| 183 | + "\n", |
| 184 | + "* Integer Index: `'b' -\u003e 1` since `b` has index 1 among feasible values.\n", |
| 185 | + "* One-Hot: `'b' -\u003e [0, 1, 0]` using one-hot encoding.\n", |
| 186 | + "\n", |
| 187 | + "Additional considerations can for example:\n", |
| 188 | + "\n", |
| 189 | + "* Whether to scale continuous parameter values into `[0,1]`\n", |
| 190 | + "* Whether to always sign-flip metrics to assume maximization only.\n", |
| 191 | + "\n", |
| 192 | + "These options can be specified when constructing both `TrialToArrayConverter` and `DefaultTrialConverter` ([source code](https://github.com/google/vizier/blob/main/vizier/pyvizier/converters/core.py)):\n", |
| 193 | + "\n", |
| 194 | + "```python\n", |
| 195 | + "@classmethod\n", |
| 196 | + "def from_study_config(\n", |
| 197 | + " cls,\n", |
| 198 | + " study_config: pyvizier.ProblemStatement,\n", |
| 199 | + " *,\n", |
| 200 | + " scale: bool = True,\n", |
| 201 | + " pad_oovs: bool = True,\n", |
| 202 | + " max_discrete_indices: int = 0,\n", |
| 203 | + " flip_sign_for_minimization_metrics: bool = True,\n", |
| 204 | + " dtype=np.float64,\n", |
| 205 | + "):\n", |
| 206 | + "```" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "markdown", |
| 211 | + "metadata": { |
| 212 | + "id": "eflsNETlg8VT" |
| 213 | + }, |
| 214 | + "source": [ |
| 215 | + "For more fine-grained control over specific `ParameterConfig`s and `MetricInformation`s, a user can specify individual arguments to each `DefaultModelInputConverter` and `DefaultModelOutputConverter` respectively." |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": null, |
| 221 | + "metadata": { |
| 222 | + "id": "eDeFdd3Op3f3" |
| 223 | + }, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "# Only considers the 'double' parameter values.\n", |
| 227 | + "double_pc = search_space.get('double')\n", |
| 228 | + "double_converter = converters.DefaultModelInputConverter(double_pc, scale=True)\n", |
| 229 | + "double_converter.convert([trial1, trial2])\n", |
| 230 | + "\n", |
| 231 | + "# Only considers the 'categorical' parameter values.\n", |
| 232 | + "categorical_pc = search_space.get('categorical')\n", |
| 233 | + "categorial_converter = converters.DefaultModelInputConverter(categorical_pc, onehot_embed=True)\n", |
| 234 | + "categorial_converter.convert([trial1, trial2])" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": null, |
| 240 | + "metadata": { |
| 241 | + "id": "qHbnUXeDqyhb" |
| 242 | + }, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "# Only considers the 'm1' metric values.\n", |
| 246 | + "m1_converter = converters.DefaultModelOutputConverter(m1)\n", |
| 247 | + "m1_converter.convert([trial1.final_measurement, trial2.final_measurement])" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "markdown", |
| 252 | + "metadata": { |
| 253 | + "id": "SIkZVMAWtdBt" |
| 254 | + }, |
| 255 | + "source": [ |
| 256 | + "These can be inserted into the `DefaultTrialConverter`:" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "code", |
| 261 | + "execution_count": null, |
| 262 | + "metadata": { |
| 263 | + "id": "_RWxP0Cgthf6" |
| 264 | + }, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "parameter_converters = [double_converter, categorial_converter]\n", |
| 268 | + "metric_converters = [m1_converter]\n", |
| 269 | + "\n", |
| 270 | + "custom_converter = converters.DefaultTrialConverter(parameter_converters, metric_converters)\n", |
| 271 | + "custom_converter.to_xy([trial1, trial2]) # Same array outputs as above." |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "markdown", |
| 276 | + "metadata": { |
| 277 | + "id": "_r2RuW6oplD5" |
| 278 | + }, |
| 279 | + "source": [ |
| 280 | + "For full customization, the user may create their own `ModelInputConverter`s and `ModelOutputConverter`s.\n", |
| 281 | + "\n", |
| 282 | + "```python\n", |
| 283 | + "class ModelInputConverter(metaclass=abc.ABCMeta):\n", |
| 284 | + " \"\"\"Interface for extracting inputs to the model.\"\"\"\n", |
| 285 | + "\n", |
| 286 | + " @abc.abstractmethod\n", |
| 287 | + " def convert(self, trials: Sequence[vz.TrialSuggestion]) -\u003e np.ndarray:\n", |
| 288 | + " \"\"\"Returns an array of shape (number of trials, feature dimension).\"\"\"\n", |
| 289 | + "\n", |
| 290 | + " @property\n", |
| 291 | + " @abc.abstractmethod\n", |
| 292 | + " def output_spec(self) -\u003e NumpyArraySpec:\n", |
| 293 | + " \"\"\"Provides specification of the output from this converter.\"\"\"\n", |
| 294 | + "\n", |
| 295 | + " @property\n", |
| 296 | + " @abc.abstractmethod\n", |
| 297 | + " def parameter_config(self):\n", |
| 298 | + " \"\"\"Original ParameterConfig that this converter acts on.\"\"\"\n", |
| 299 | + "\n", |
| 300 | + " @abc.abstractmethod\n", |
| 301 | + " def to_parameter_values(\n", |
| 302 | + " self, array: np.ndarray\n", |
| 303 | + " ) -\u003e List[Optional[vz.ParameterValue]]:\n", |
| 304 | + " \"\"\"Convert and clip to the nearest feasible parameter values.\"\"\"\n", |
| 305 | + "```\n", |
| 306 | + "\n", |
| 307 | + "```python\n", |
| 308 | + "class ModelOutputConverter(metaclass=abc.ABCMeta):\n", |
| 309 | + " \"\"\"Metric converter interface.\"\"\"\n", |
| 310 | + "\n", |
| 311 | + " @abc.abstractmethod\n", |
| 312 | + " def convert(self, measurements: Sequence[vz.Measurement]) -\u003e np.ndarray:\n", |
| 313 | + " \"\"\"Returns N x 1 array.\"\"\"\n", |
| 314 | + " pass\n", |
| 315 | + "\n", |
| 316 | + " @abc.abstractmethod\n", |
| 317 | + " def to_metrics(self, labels: np.ndarray) -\u003e Sequence[Optional[vz.Metric]]:\n", |
| 318 | + " \"\"\"Returns a list of pyvizier metrics.\"\"\"\n", |
| 319 | + "\n", |
| 320 | + " @property\n", |
| 321 | + " @abc.abstractmethod\n", |
| 322 | + " def metric_information(self) -\u003e vz.MetricInformation:\n", |
| 323 | + " \"\"\"Describes the semantics of the return value from convert() method.\"\"\"\n", |
| 324 | + "\n", |
| 325 | + " @property\n", |
| 326 | + " def output_shape(self) -\u003e Tuple[None, int]:\n", |
| 327 | + " return (None, 1)\n", |
| 328 | + "```" |
| 329 | + ] |
| 330 | + } |
| 331 | + ], |
| 332 | + "metadata": { |
| 333 | + "colab": { |
| 334 | + "last_runtime": { |
| 335 | + "build_target": "//learning/deepmind/dm_python:dm_notebook3", |
| 336 | + "kind": "private" |
| 337 | + }, |
| 338 | + "name": "Converters.ipynb", |
| 339 | + "private_outputs": true, |
| 340 | + "provenance": [ |
| 341 | + { |
| 342 | + "file_id": "1nArqkCmNjB9-GwTg3nera6cQ9J4ws1FY", |
| 343 | + "timestamp": 1707957172845 |
| 344 | + } |
| 345 | + ] |
| 346 | + }, |
| 347 | + "kernelspec": { |
| 348 | + "display_name": "Python 3", |
| 349 | + "name": "python3" |
| 350 | + }, |
| 351 | + "language_info": { |
| 352 | + "name": "python" |
| 353 | + } |
| 354 | + }, |
| 355 | + "nbformat": 4, |
| 356 | + "nbformat_minor": 0 |
| 357 | +} |
0 commit comments