@@ -56,26 +56,26 @@ def apply_weight_drop(block, local_param_regex, rate, axes=(),
56
56
>>> gluonnlp.model.apply_weight_drop(net, r'.*h2h_weight', 0.5)
57
57
>>> net.collect_params()
58
58
lstm0_ (
59
- Parameter lstm0_l0_i2h_weight (shape=(40, 0), dtype=float32)
60
- WeightDropParameter lstm0_l0_h2h_weight (shape=(40, 10), dtype=float32, \
59
+ Parameter lstm0_l0_i2h_weight (shape=(40, 0), dtype=<class 'numpy. float32'> )
60
+ WeightDropParameter lstm0_l0_h2h_weight (shape=(40, 10), dtype=<class 'numpy. float32'> , \
61
61
rate=0.5, mode=training)
62
- Parameter lstm0_l0_i2h_bias (shape=(40,), dtype=float32)
63
- Parameter lstm0_l0_h2h_bias (shape=(40,), dtype=float32)
64
- Parameter lstm0_r0_i2h_weight (shape=(40, 0), dtype=float32)
65
- WeightDropParameter lstm0_r0_h2h_weight (shape=(40, 10), dtype=float32, \
62
+ Parameter lstm0_l0_i2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
63
+ Parameter lstm0_l0_h2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
64
+ Parameter lstm0_r0_i2h_weight (shape=(40, 0), dtype=<class 'numpy. float32'> )
65
+ WeightDropParameter lstm0_r0_h2h_weight (shape=(40, 10), dtype=<class 'numpy. float32'> , \
66
66
rate=0.5, mode=training)
67
- Parameter lstm0_r0_i2h_bias (shape=(40,), dtype=float32)
68
- Parameter lstm0_r0_h2h_bias (shape=(40,), dtype=float32)
69
- Parameter lstm0_l1_i2h_weight (shape=(40, 20), dtype=float32)
70
- WeightDropParameter lstm0_l1_h2h_weight (shape=(40, 10), dtype=float32, \
67
+ Parameter lstm0_r0_i2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
68
+ Parameter lstm0_r0_h2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
69
+ Parameter lstm0_l1_i2h_weight (shape=(40, 20), dtype=<class 'numpy. float32'> )
70
+ WeightDropParameter lstm0_l1_h2h_weight (shape=(40, 10), dtype=<class 'numpy. float32'> , \
71
71
rate=0.5, mode=training)
72
- Parameter lstm0_l1_i2h_bias (shape=(40,), dtype=float32)
73
- Parameter lstm0_l1_h2h_bias (shape=(40,), dtype=float32)
74
- Parameter lstm0_r1_i2h_weight (shape=(40, 20), dtype=float32)
75
- WeightDropParameter lstm0_r1_h2h_weight (shape=(40, 10), dtype=float32, \
72
+ Parameter lstm0_l1_i2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
73
+ Parameter lstm0_l1_h2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
74
+ Parameter lstm0_r1_i2h_weight (shape=(40, 20), dtype=<class 'numpy. float32'> )
75
+ WeightDropParameter lstm0_r1_h2h_weight (shape=(40, 10), dtype=<class 'numpy. float32'> , \
76
76
rate=0.5, mode=training)
77
- Parameter lstm0_r1_i2h_bias (shape=(40,), dtype=float32)
78
- Parameter lstm0_r1_h2h_bias (shape=(40,), dtype=float32)
77
+ Parameter lstm0_r1_i2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
78
+ Parameter lstm0_r1_h2h_bias (shape=(40,), dtype=<class 'numpy. float32'> )
79
79
)
80
80
>>> ones = mx.nd.ones((3, 4, 5))
81
81
>>> net.initialize()
0 commit comments