|
| 1 | +#!/usr/bin/env python |
| 2 | +# |
| 3 | +# Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file |
| 6 | +# except in compliance with the License. A copy of the License is located at |
| 7 | +# |
| 8 | +# http://aws.amazon.com/apache2.0/ |
| 9 | +# |
| 10 | +# or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" |
| 11 | +# BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. See the License for |
| 12 | +# the specific language governing permissions and limitations under the License. |
| 13 | + |
| 14 | +from collections import defaultdict |
| 15 | +from typing import List, Dict |
| 16 | +from dataclasses import dataclass |
| 17 | +from djl_python import test_model, Input |
| 18 | +from djl_python.request import Request |
| 19 | +from djl_python.input_parser import format_input |
| 20 | + |
| 21 | +@dataclass |
| 22 | +class SimulationSchedule: |
| 23 | + prompts: List[str] |
| 24 | + params: List[Dict] |
| 25 | + reqs_to_prefill: List[int] |
| 26 | + wait_steps: List[int] |
| 27 | + |
| 28 | + |
| 29 | +class NeuronRollingBatchGenerator: |
| 30 | + |
| 31 | + def __init__(self): |
| 32 | + self.rolling_batch = None |
| 33 | + self._req_id = 0 |
| 34 | + # Store the results |
| 35 | + self.output_all = defaultdict(list) |
| 36 | + self.input_all = {} |
| 37 | + self.data_collector = [] |
| 38 | + self.responses = [] |
| 39 | + |
| 40 | + # Status variables |
| 41 | + self.input_str = [] |
| 42 | + self.params = [] |
| 43 | + self.req_ids = [] |
| 44 | + |
| 45 | + # Spec_dec |
| 46 | + self.token_numbers = defaultdict(list) |
| 47 | + |
| 48 | + def init_neuron_service(self, properties: dict): |
| 49 | + from djl_python.transformers_neuronx import TransformersNeuronXService |
| 50 | + _service = TransformersNeuronXService() |
| 51 | + _service.initialize(properties) |
| 52 | + self.rolling_batch = _service.rolling_batch |
| 53 | + |
| 54 | + def get_req_id(self): |
| 55 | + req_id = self._req_id |
| 56 | + self._req_id = self._req_id + 1 |
| 57 | + return req_id |
| 58 | + |
| 59 | + def collect_data(self, result): |
| 60 | + done_requests_indices = [] |
| 61 | + for idx, item in enumerate(result): |
| 62 | + if len(self.data_collector) <= idx: |
| 63 | + self.data_collector.append(item["data"]) |
| 64 | + else: |
| 65 | + self.data_collector[idx] += item["data"] |
| 66 | + if item['last']: |
| 67 | + done_requests_indices.append(idx) |
| 68 | + for idx in sorted(done_requests_indices, reverse=True): |
| 69 | + value = self.data_collector.pop(idx) |
| 70 | + self.responses.append(value) |
| 71 | + print(f"\nFinished request: {value}\n") |
| 72 | + return done_requests_indices |
| 73 | + |
| 74 | + def build_request(self, raw_input): |
| 75 | + inputs = test_model.create_json_request(raw_input) |
| 76 | + parsed_inputs = format_input(inputs) |
| 77 | + request = Request(parsed_inputs) |
| 78 | + request.id = self.get_req_id() |
| 79 | + return request |
| 80 | + |
| 81 | + def simulator(self, schedule: SimulationSchedule): |
| 82 | + assert len(schedule.prompts) == len(schedule.params) |
| 83 | + assert len(schedule.reqs_to_prefill) == len(schedule.wait_steps) |
| 84 | + zipped_requests = zip(schedule.prompts, schedule.params) |
| 85 | + all_requests = [{ |
| 86 | + "inputs": prompt, |
| 87 | + "parameters": params |
| 88 | + } for prompt, params in zipped_requests] |
| 89 | + current_requests = [] |
| 90 | + new_requests = [] |
| 91 | + for batch_size, step in zip(schedule.reqs_to_prefill, |
| 92 | + schedule.wait_steps): |
| 93 | + for _ in range(batch_size): |
| 94 | + request = self.build_request(all_requests.pop(0)) |
| 95 | + new_requests = [request] + new_requests |
| 96 | + current_requests.append(request) |
| 97 | + |
| 98 | + for i in range(step): |
| 99 | + if len(current_requests) == 0: |
| 100 | + break |
| 101 | + generated_tokens = self.rolling_batch.inference(new_requests) |
| 102 | + new_requests.clear() |
| 103 | + finished_indices = self.collect_data(generated_tokens) |
| 104 | + for idx in sorted(finished_indices, reverse=True): |
| 105 | + current_requests.pop(idx) |
| 106 | + while len(current_requests) > 0: |
| 107 | + generated_tokens = self.rolling_batch.inference(new_requests) |
| 108 | + finished_indices = self.collect_data(generated_tokens) |
| 109 | + for idx in sorted(finished_indices, reverse=True): |
| 110 | + current_requests.pop(idx) |
| 111 | + |
| 112 | + def step(self, step=20, input_str_delta=None, params_delta=None): |
| 113 | + if input_str_delta: |
| 114 | + begin_id = max(self.input_all.keys(), default=0) + 1 |
| 115 | + req_ids_delta = list( |
| 116 | + range(begin_id, begin_id + len(input_str_delta))) |
| 117 | + |
| 118 | + self.input_str += input_str_delta |
| 119 | + self.params += params_delta |
| 120 | + self.req_ids += req_ids_delta |
| 121 | + for req_id, input_s, param in zip(req_ids_delta, input_str_delta, |
| 122 | + params_delta): |
| 123 | + self.input_all[req_id] = (input_s, param) |
| 124 | + |
| 125 | + iterator = range(step) |
| 126 | + for i in iterator: |
| 127 | + result = self.rolling_batch.inference(self.input_str, self.params) |
| 128 | + for res, req_id in zip(result, self.req_ids): |
| 129 | + self.output_all[req_id].append(res['data']) |
| 130 | + self.token_numbers[req_id].append(res.get('step_token_num', 1)) |
| 131 | + self.req_ids = [ |
| 132 | + req_id for req_id, res in zip(self.req_ids, result) |
| 133 | + if not res['last'] |
| 134 | + ] |
| 135 | + self.input_str = [ |
| 136 | + s for s, res in zip(self.input_str, result) if not res['last'] |
| 137 | + ] |
| 138 | + self.params = [ |
| 139 | + p for p, res in zip(self.params, result) if not res['last'] |
| 140 | + ] |
| 141 | + if not self.req_ids: |
| 142 | + break |
| 143 | + |
| 144 | + def is_empty(self): |
| 145 | + return not self.req_ids |
| 146 | + |
| 147 | + def reset(self): |
| 148 | + self.data_collector = [] |
| 149 | + self.rolling_batch = None |
| 150 | + # Store the results |
| 151 | + self.output_all = defaultdict(list) |
| 152 | + self.input_all = {} |
| 153 | + |
| 154 | + # Status variables, the remaining |
| 155 | + self.input_str = [] |
| 156 | + self.params = [] |
| 157 | + self.req_ids = [] |
| 158 | + |
| 159 | + self.token_numbers = defaultdict(list) |
0 commit comments