|
| 1 | +from typing import List, Optional, Tuple, Type |
| 2 | + |
| 3 | +import pytest |
| 4 | + |
| 5 | +from vllm.multimodal.utils import rescale_image_size |
| 6 | +from vllm.transformers_utils.tokenizer import patch_padding_side |
| 7 | + |
| 8 | +from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner |
| 9 | +from ....utils import large_gpu_test |
| 10 | +from ...utils import check_logprobs_close |
| 11 | + |
| 12 | +HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ |
| 13 | + "stop_sign": |
| 14 | + "What's the content of the image?", |
| 15 | + "cherry_blossom": |
| 16 | + "What is the season?", |
| 17 | +}) |
| 18 | + |
| 19 | +models = ["THUDM/glm-4v-9b"] |
| 20 | +target_dtype = "bfloat16" |
| 21 | + |
| 22 | + |
| 23 | +def run_test( |
| 24 | + hf_runner: Type[HfRunner], |
| 25 | + vllm_runner: Type[VllmRunner], |
| 26 | + inputs: List[Tuple[List[str], PromptImageInput]], |
| 27 | + model: str, |
| 28 | + *, |
| 29 | + dtype: str, |
| 30 | + max_tokens: int, |
| 31 | + num_logprobs: int, |
| 32 | + mm_limit: int, |
| 33 | + tensor_parallel_size: int, |
| 34 | + distributed_executor_backend: Optional[str] = None, |
| 35 | +): |
| 36 | + # max_model_len should be greater than image_feature_size |
| 37 | + with vllm_runner(model, |
| 38 | + max_model_len=2048, |
| 39 | + max_num_seqs=2, |
| 40 | + dtype=dtype, |
| 41 | + limit_mm_per_prompt={"image": mm_limit}, |
| 42 | + tensor_parallel_size=tensor_parallel_size, |
| 43 | + distributed_executor_backend=distributed_executor_backend, |
| 44 | + enforce_eager=True) as vllm_model: |
| 45 | + stop_token_ids = [151329, 151336, 151338] |
| 46 | + vllm_outputs_per_image = [ |
| 47 | + vllm_model.generate_greedy_logprobs(prompts, |
| 48 | + max_tokens, |
| 49 | + num_logprobs=num_logprobs, |
| 50 | + images=images, |
| 51 | + stop_token_ids=stop_token_ids) |
| 52 | + for prompts, images in inputs |
| 53 | + ] |
| 54 | + |
| 55 | + with hf_runner(model, dtype=dtype) as hf_model: |
| 56 | + hf_processor = hf_model.processor |
| 57 | + patch_padding_side(hf_processor) |
| 58 | + |
| 59 | + def processor(*args, text="", images=None, **kwargs): |
| 60 | + if images is None: |
| 61 | + return hf_processor(*args, **kwargs) |
| 62 | + |
| 63 | + return hf_processor.apply_chat_template( |
| 64 | + [{ |
| 65 | + "role": "user", |
| 66 | + "image": images, |
| 67 | + "content": text |
| 68 | + }], |
| 69 | + add_generation_prompt=True, |
| 70 | + tokenize=True, |
| 71 | + return_dict=True, |
| 72 | + **kwargs, |
| 73 | + ) |
| 74 | + |
| 75 | + hf_model.processor = processor |
| 76 | + hf_model.model.get_output_embeddings = lambda: \ |
| 77 | + hf_model.model.transformer.output_layer |
| 78 | + hf_outputs_per_image = [ |
| 79 | + hf_model.generate_greedy_logprobs_limit( |
| 80 | + prompts, |
| 81 | + max_tokens, |
| 82 | + num_logprobs=num_logprobs, |
| 83 | + images=images, |
| 84 | + ) for prompts, images in inputs |
| 85 | + ] |
| 86 | + |
| 87 | + for hf_outputs, vllm_outputs in zip(hf_outputs_per_image, |
| 88 | + vllm_outputs_per_image): |
| 89 | + check_logprobs_close( |
| 90 | + outputs_0_lst=hf_outputs, |
| 91 | + outputs_1_lst=vllm_outputs, |
| 92 | + name_0="hf", |
| 93 | + name_1="vllm", |
| 94 | + ) |
| 95 | + |
| 96 | + |
| 97 | +@large_gpu_test(min_gb=48) |
| 98 | +@pytest.mark.parametrize("model", models) |
| 99 | +@pytest.mark.parametrize( |
| 100 | + "size_factors", |
| 101 | + [ |
| 102 | + # No image |
| 103 | + [], |
| 104 | + # Single-scale |
| 105 | + [1.0], |
| 106 | + # Single-scale, batched |
| 107 | + [1.0, 1.0, 1.0], |
| 108 | + # Multi-scale |
| 109 | + [0.25, 0.5, 1.0], |
| 110 | + ], |
| 111 | +) |
| 112 | +@pytest.mark.parametrize("dtype", [target_dtype]) |
| 113 | +@pytest.mark.parametrize("max_tokens", [128]) |
| 114 | +@pytest.mark.parametrize("num_logprobs", [5]) |
| 115 | +def test_models(hf_runner, vllm_runner, image_assets, model, size_factors, |
| 116 | + dtype: str, max_tokens: int, num_logprobs: int) -> None: |
| 117 | + images = [asset.pil_image for asset in image_assets] |
| 118 | + |
| 119 | + inputs_per_image = [( |
| 120 | + [prompt for _ in size_factors], |
| 121 | + [rescale_image_size(image, factor) for factor in size_factors], |
| 122 | + ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] |
| 123 | + run_test( |
| 124 | + hf_runner, |
| 125 | + vllm_runner, |
| 126 | + inputs_per_image, |
| 127 | + model, |
| 128 | + dtype=dtype, |
| 129 | + max_tokens=max_tokens, |
| 130 | + num_logprobs=num_logprobs, |
| 131 | + mm_limit=1, |
| 132 | + tensor_parallel_size=1, |
| 133 | + ) |
0 commit comments