Skip to content

Commit 7073198

Browse files
authored
Version 1.3.3 (#680)
* make misc revisions * note keras issue in docs/ * update n_iter docstring * version 1.3.3
1 parent 321d0de commit 7073198

File tree

5 files changed

+9
-6
lines changed

5 files changed

+9
-6
lines changed

docs/tex/troubleshooting.tex

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,14 +46,16 @@ \subsubsection{Full Installation}
4646
\item Neural networks are supported through three libraries:
4747
\href{http://keras.io}{Keras} (>=1.0)
4848
\begin{lstlisting}[language=JSON]
49-
pip install keras
49+
pip install keras==2.0.4
5050
\end{lstlisting}
5151
\href{https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim}{TensorFlow Slim}
5252
(native in TensorFlow), and
5353
\href{https://github.com/google/prettytensor}{PrettyTensor} (>=0.7.4)
5454
\begin{lstlisting}[language=JSON]
5555
pip install prettytensor
5656
\end{lstlisting}
57+
Note that for Keras 2.0.5 and beyond, all neural net layer transformations cannot be directly applied on random variables anymore. For example, if \texttt{x} is a \texttt{ed.RandomVariable} object, one must call \texttt{tf.convert_to_tensor} before applying it to a layer transformation, \texttt{Dense(256)(tf.convert_to_tensor(x))}.
58+
See \href{https://github.com/fchollet/keras/issues/6979}{here} for more details.
5759
\item Notebooks require
5860
\href{http://jupyter.org}{Jupyter} (>=1.0.0)
5961
\begin{lstlisting}[language=JSON]

edward/inferences/gan_inference.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -224,7 +224,6 @@ def _build_optimizer(optimizer, global_step):
224224
100, 0.9, staircase=True)
225225
else:
226226
learning_rate = 0.01
227-
global_step = None
228227

229228
# Build optimizer.
230229
if optimizer is None:
@@ -247,6 +246,6 @@ def _build_optimizer(optimizer, global_step):
247246
else:
248247
raise ValueError('Optimizer class not found:', optimizer)
249248
elif not isinstance(optimizer, tf.train.Optimizer):
250-
raise TypeError("Optimizer must be a str, tf.train.Optimizer, or None.")
249+
raise TypeError("Optimizer must be str, tf.train.Optimizer, or None.")
251250

252251
return optimizer, global_step

edward/inferences/inference.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,10 @@ def initialize(self, n_iter=1000, n_print=None, scale=None, logdir=None,
163163
Parameters
164164
----------
165165
n_iter : int, optional
166-
Number of iterations for algorithm.
166+
Number of iterations for algorithm when calling ``run()``.
167+
Alternatively if controlling inference manually, it is the
168+
expected number of calls to ``update()``; this number determines
169+
tracking information during the print progress.
167170
n_print : int, optional
168171
Number of iterations for each print progress. To suppress print
169172
progress, then specify 0. Default is ``int(n_iter / 100)``.

edward/inferences/variational_inference.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,6 @@ def initialize(self, optimizer=None, var_list=None, use_prettytensor=False,
9999
100, 0.9, staircase=True)
100100
else:
101101
learning_rate = 0.01
102-
global_step = None
103102

104103
# Build optimizer.
105104
if optimizer is None:

edward/version.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
__version__ = '1.3.2'
1+
__version__ = '1.3.3'

0 commit comments

Comments
 (0)